
Fourth Halmstead Summer School on
Testing June 2014

6/10/2014

Rex Page – Univ of Oklahoma 1

Fourth Halmstad Summer School on Testing
June 9-12, 2014

Testing and Verification in ACL2
Rex Page, University of Oklahoma

June 12, 9:30 – 10:30

Proof Pad ― IDE for ACL2 (Eggensperger)
 programming + theorem proving = full ACL2
 + property-based testing

… but no narrowing, no user-defined data generators
 three other ACL2 IDEs

DrACuLA (DrRacket plug-in: PLT, Felleisen, Eastlund)
Emacs (comes with ACL2 installation) – ACL2 pros use this
ACL2 Sedan (Eclipse plug-in)

What is ACL2 ?
ACL2 ― A Computational Logic for Applicative Common Lisp
programming language and mechanized logic

dialect of Common Lisp
conservative logic for effective mechanization/automation
1st-order logic, terminating functions, no mutable variables

Boyer/Moore theorem-prover, latest edition
40-year history, proof checking and proof generation
maintenance and enhancement ongoing

2Fourth Halmstad Summer School on Testing - June 9-12, 2014

no property testing

Why ACL2 ?
instead of Isabelle or Coq or …

Fourth Halmstad Summer School on Testing - June 9-12, 2014 3

Learning curve
 students can succeed early with ACL2
Focus on software from the outset
 programming language a central element (Lisp)
 embedded logic for specifying software properties
Automated reasoning
 effective automation of property verification

(full automation impossible of course … Church/Turing)
 makes ACL2 attractive for industrial apps

AMD, Centaur/VIA Tech, Rockwell Collins, NSA, …

Goal
software that meets expectations

Fourth Halmstad Summer School on Testing - June 9-12, 2014 4

Specifying expectations
 suite of test cases

input, expected output (operation x2): 22 = 4, 32 = 9
 corner cases

carefully chosen input, expected output: (-1)2 = 1
 operator relationships

Boolean formulas: x2 ≥ 0, (x + y)2 = x2 + 2xy + y2 , …

We expect tests to be theorems
 test cases: theorems with one-element domains
 operator relationships: more general theorems
 theorems: a familiar notion in software

(eg, type checking proves theorems about types)

input output

Goal for today
basic overview of ACL2 capability

Fourth Halmstad Summer School on Testing - June 9-12, 2014 5

Brief, introductory experience with ACL2
 specify and run tests of properties of operations
 verify some of those properties with proofs

ACL2’s potential for software verification
 kinds of things that have been done with ACL2
 investment required for property verification

Focus on properties with large domains
Boolean formulas specify expectations

Fourth Halmstad Summer School on Testing - June 9-12, 2014 6

Example: sum and reverse operators
 sum[x1 x2 … xn] = x1 + x2 + … + xn
 reverse[x1 x2 … xn] = [xn xn-1 … x1]
Expectation
 sum[x1 x2 … xn] = sum(reverse[x1 x2 … xn])
ACL2 spec for this expectation
(defthm sum=sum-reverse
(= (sum xs)

(sum(reverse xs))))

Proof Pad spec for testing the expectation
(defproperty test:sum=sum-reverse
(xs :value (random-list-of (random-integer)))
(= (sum xs)

(sum(reverse xs))))

Fourth Halmstead Summer School on
Testing June 2014

6/10/2014

Rex Page – Univ of Oklahoma 2

7

Theorems are derived from axioms
x + 0 = x {+ identity}
(-x) + x = 0 {+ complement}
x  1 = x { identity}
x  0 = 0 { null}
x + y = y + x {+ commutative}
x + (y + z) = (x + y) + z {+ associative}
x  (y + z) = (x  y) + (x  z) {distributive law}

x, y, z stand for any formula

Software Verification
 axioms = programs
 theorems =

properties of programs

ACL2 software
 program =

system of equations
 constrains programs,

but not computations
(Turing complete)

Fourth Halmstad Summer School on Testing - June 9-12, 2014 7

theorem: (-1)(-1) = 1
(-1)  (-1)

= ((-1)  (-1)) + 0 {+ id}
= ((-1)  (-1)) + ((-1) + 1) {+ comp}
= (((-1)(-1)) + (-1)) + 1 {+ assoc}
= (((-1)(-1)) + (-1)1) + 1 { id}
= ((-1)((-1) + 1)) + 1 {dist law}
= ((-1)0) + 1 {+ comp}
= 0 + 1 { null}
= 1 + 0 {+ comm}
= 1 {+ id}

Some ACL2 operations (informal specs)
(cons x [x1 x2 … xn]) = [x x1 x2 … xn]
(first [x1 x2 … xn+1]) = x1
(rest [x1 x2 … xn+1]) = [x2 … xn+1]
(append [x1 x2 … xn] [y1 y2 … ym]) = [x1 x2 … xn y1 y2 … ym]
(len [x1 x2 … xn]) = n

8

Theorems (properties derivable from axioms)
(append xs (append ys zs)) = (append (append xs ys) zs) {app-assoc}
(len (append xs ys)) = (len xs) + (len ys) {app-len}

Axioms (equations of computation … programs)
(first (cons x xs)) = x {first}
(rest (cons x xs)) = xs {rest}
(append nil ys) = ys {app0}
(append (cons x xs) ys) = (cons x (append xs ys)) {app1}
(len nil) = 0 {len0}
(len (cons x xs)) = 1 + (len xs) {len1}

Equations provide framework
axioms, theorems, programs, properties … formulated as equations

Fourth Halmstad Summer School on Testing - June 9-12, 2014

algebra of software

9

Properties (tests) that act as definitions

These equations have the following attributes
 comprehensive ― all cases covered by left-hand-side formulas
 consistent ― no two equations specify conflicting results
 computational

Two properties of concatenation
(append nil ys) = ys {app0}
(append (cons x xs) ys) = (cons x (append xs ys)) {app1}

Fourth Halmstad Summer School on Testing - June 9-12, 2014 10

Properties (tests) that act as definitions

These equations have the following attributes
 comprehensive ― all cases covered
 consistent ― no two equations specify conflicting results
 computational

circular reference on right-hand-side of equation closer to
non-circular case than reference on left-hand-side

Two properties of concatenation
(append nil ys) = ys {app0}
(append (cons x xs) ys) = (cons x (append xs ys)) {app1}

Fourth Halmstad Summer School on Testing - June 9-12, 2014

Formal (ACL2) definition of concatenation
(defun append (xs ys)
(if (consp xs) ; cons predicate: is xs non-empty?

(cons (first xs) (append (rest xs) ys)) ; {app1}
ys ; {app0}

11

Properties (tests) that act as definitions

These equations have the following attributes
 comprehensive ― all cases covered
 consistent ― no two equations specify conflicting results
 computational

circular reference on right-hand-side of equation closer to
non-circular case than reference on left-hand-side

Two properties of concatenation
(append nil ys) = ys {app0}
(append (cons x xs) ys) = (cons x (append xs ys)) {app1}

Equations satisfying “the 3 c’s” define an operator
 all properties of the operator derive from the equations
 including computational properties

Fourth Halmstad Summer School on Testing - June 9-12, 2014

Formal specifications of properties (Proof Pad)

12Fourth Halmstad Summer School on Testing - June 9-12, 2014

Some expected properties (informal specs)
(append xs (append ys zs)) = (append (append xs ys) zs) {app-assoc}
(len (append xs ys)) = (len xs) + (len ys) {app-len}

Fourth Halmstead Summer School on
Testing June 2014

6/10/2014

Rex Page – Univ of Oklahoma 3

Formal specifications of properties (Proof Pad)

13Fourth Halmstad Summer School on Testing - June 9-12, 2014

fo
rm

al
 p

ro
pe

rt
y (defproperty test-app-assoc ; {app-assoc}

(xs :value (random-list-of (random-integer))
ys :value (random-list-of (random-integer))
zs :value (random-list-of (random-integer)))
(equal (append xs (append ys zs))

(append (append xs ys) zs)))

(append xs (append ys zs)) = (append (append xs ys) zs) {app-assoc}
(len (append xs ys)) = (len xs) + (len ys) {app-len}informal

14Fourth Halmstad Summer School on Testing - June 9-12, 2014

(defproperty test-app-assoc ; {app-assoc}
(xs :value (random-list-of (random-integer))
ys :value (random-list-of (random-integer))
zs :value (random-list-of (random-integer)))
(equal (append xs (append ys zs))

(append (append xs ys) zs)))

(defproperty test-append-preserves-len ; {app-len}
(xs :value (random-list-of (random-integer))
ys :value (random-list-of (random-integer)))
(= (len (append xs ys)) (+ (len xs) (len ys))))

Formal specifications of properties (Proof Pad)

fo
rm

al
 p

ro
pe

rt
ie

s
(P

ro
of

 P
ad

)

(append xs (append ys zs)) = (append (append xs ys) zs) {app-assoc}
(len (append xs ys)) = (len xs) + (len ys) {app-len}informal

15

Formal specifications of theorems (ACL2)

(defproperty test-app-assoc ; {app-assoc}
(xs :value (random-list-of (random-integer))
ys :value (random-list-of (random-integer))
zs :value (random-list-of (random-integer)))
(equal (append xs (append ys zs))

(append (append xs ys) zs)))

Fourth Halmstad Summer School on Testing - June 9-12, 2014

(defproperty test-append-preserves-len ; {app-len}
(xs :value (random-list-of (random-integer))
ys :value (random-list-of (random-integer)))
(= (len (append xs ys)) (+ (len xs) (len ys))))

(defthm app-assoc ; {app-assoc}
(equal (append xs (append ys zs))

(append (append xs ys) zs)))

(defthm append-preserves-len ; {app-len}
(= (len (append xs ys)) (+ (len xs) (len ys))))

pr
op

er
ti

es
 (P

ro
of

 P
ad

)

theorem
s (A

CL2)
(append xs (append ys zs)) = (append (append xs ys) zs) {app-assoc}
(len (append xs ys)) = (len xs) + (len ys) {app-len}informal

16

Additional properties of concatenation

Fourth Halmstad Summer School on Testing - June 9-12, 2014

Axioms defining prefix operator
(prefix 0 xs) = nil {pfx0 a}
(prefix n nil) = nil {pfx0 b}
(prefix (+ n 1) (cons x xs)) = (cons x (prefix n xs)) {pfx1}

(defproperty test-app-suffix ; {app-sfx}
(xs :value (random-list-of (random-integer))
ys :value (random-list-of (random-integer)))
(equal (nthcdr (len xs) (append xs ys))

ys))

(defproperty test-app-prefix ; {app-pfx}
(xs :value (random-list-of (random-integer))
ys :value (random-list-of (random-integer)))
(equal (prefix (len xs) (append xs ys))

xs))

(defproperty test-app-prefix ; {app-pfx}
(xs :value (random-list-of (random-integer))
ys :value (random-list-of (random-integer)))
(equal (prefix (len xs) (append xs ys))

xs))

17

Additional properties of concatenation

Fourth Halmstad Summer School on Testing - June 9-12, 2014

Axioms defining prefix operator
(prefix 0 xs) = nil {pfx0 a}
(prefix n nil) = nil {pfx0 b}
(prefix (+ n 1) (cons x xs)) = (cons x (prefix n xs)) {pfx1}

(defproperty test-app-suffix ; {app-sfx}
(xs :value (random-list-of (random-integer))
ys :value (random-list-of (random-integer)))
(equal (nthcdr (len xs) (append xs ys))

ys))

18

Additional properties of concatenation

(defproperty test-app-suffix ; {app-sfx}
(xs :value (random-list-of (random-integer))
ys :value (random-list-of (random-integer)))
(equal (nthcdr (len xs) (append xs ys))

ys))

Fourth Halmstad Summer School on Testing - June 9-12, 2014

(defproperty test-app-prefix ; {app-pfx}
(xs :value (random-list-of (random-integer))
ys :value (random-list-of (random-integer)))
(equal (prefix (len xs) (append xs ys))

xs)))

; import some theorems of algebra
(include-book "arithmetic-3/top" :dir :system)

th
eo

re
m

s
of

 a
lg

eb
ra

 n
ee

de
d

fo
r

th
es

e
pr

oo
fs

Fourth Halmstead Summer School on
Testing June 2014

6/10/2014

Rex Page – Univ of Oklahoma 4

19

Additional properties of concatenation

(defproperty test-app-suffix ; {app-sfx}
(xs :value (random-list-of (random-integer))
ys :value (random-list-of (random-integer)))
(equal (nthcdr (len xs) (append xs ys))

ys))

Fourth Halmstad Summer School on Testing - June 9-12, 2014

(defproperty test-app-prefix ; {app-pfx}
(xs :value (random-list-of (random-integer))
ys :value (random-list-of (random-integer)))
(implies (true-listp xs) ; xs must be a list

(equal (prefix (len xs) (append xs ys))
xs)))

; import some theorems of algebra
(include-book "arithmetic-3/top" :dir :system)

20

Practice exercises
Ex 1: Get ACL2 to prove the following property

(defproperty test-sum=sum-reverse
(xs :value (random-list-of (random-integer)))
(= (sum xs)

(sum(reverse xs))))

Hints
1. You will need to define “sum”
2. The intrinsic “reverse” is tail-recursive, with accumulator,

which complicates reasoning. Define “rev” as an append of the
first element to the rev of the rest of the list.

3. Restate the property with “rev” and get ACL2 to prove it
Ex 2: Fast reverse: Use tail recursion to define “rev-app”

so that is has the following {rev-app} property
(rev-app xs ys) = (append (rev xs) ys) {rev-app}

Ex 3: Get ACL2 to prove the rev-app equation

Fourth Halmstad Summer School on Testing - June 9-12, 2014

Install Proof Pad: http://proofpad.org
Notes: http://ceres.hh.se/mediawiki/index.php/HSST_2014

(mrg [x1 x2… xn] [y1 y2 … ym]) = [z1 z2 … zn+m]
where z1  z2  …  zn+m if

if x1  x2  …  xn and y1  y2  …  ym

definitional properties of mrg
(mrg (cons x xs) (cons y ys)) = (cons x (mrg xs (cons y ys))) {xy}
(mrg (cons x xs) (cons y ys)) = (cons y (mrg (cons x xs) ys)) {yx}
(mrg xs nil) = xs {mg0}
(mrg nil ys) = ys {mg1}

Fourth Halmstad Summer School on Testing - June 9-12, 2014 21

Ordered merge

definitional properties of mrg

(defun mrg (xs ys)
(if (and (consp xs) (consp ys))

(let* ((x (first xs)) (y (first ys)))
(if (<= x y)

(cons x (mrg (rest xs) ys)) ; {mgx}
(cons y (mrg xs (rest ys))))) ; {mgy}

(if (not (consp ys))
xs ; ys is empty ; {mg0}
ys))) ; xs is empty ; {mg1}

(mrg [x1 x2… xn] [y1 y2 … ym]) = [z1 z2 … zn+m]
where z1  z2  …  zn+m if

if x1  x2  …  xn and y1  y2  …  ym

(mrg (cons x xs) (cons y ys)) = (cons x (mrg xs (cons y ys))) {xy}
(mrg (cons x xs) (cons y ys)) = (cons y (mrg (cons x xs) ys)) {yx}
(mrg xs nil) = xs {mg0}
(mrg nil ys) = ys {mg1}

formal definition

Fourth Halmstad Summer School on Testing - June 9-12, 2014 22

Ordered merge

definitional properties of mrg

Ordered merge
(mrg [x1 x2… xn] [y1 y2 … ym]) = [z1 z2 … zn+m]
where z1  z2  …  zn+m if

if x1  x2  …  xn and y1  y2  …  ym

(mrg (cons x xs) (cons y ys)) = (cons x (mrg xs (cons y ys))) {xy}
(mrg (cons x xs) (cons y ys)) = (cons y (mrg (cons x xs) ys)) {yx}
(mrg xs nil) = xs {mg0}
(mrg nil ys) = ys {mg1}

Fourth Halmstad Summer School on Testing - June 9-12, 2014 23

One of our expectations is
 (up(mrg xs ys)) if (up xs) and (up ys)

where
(up[x1 x2… xn]) = x1  x2  …  xn

definitional properties of mrg

(defun mrg (xs ys)
(declare (xargs :measure (+ (len xs) (len ys))))
(if (and (consp xs) (consp ys))

(let* ((x (first xs)) (y (first ys)))
(if (<= x y)

(cons x (mrg (rest xs) ys)) ; {mgx}
(cons y (mrg xs (rest ys))))) ; {mgy}

(if (not (consp ys))
xs ; ys is empty ; {mg0}
ys))) ; xs is empty ; {mg1}

Ordered merge
(mrg [x1 x2… xn] [y1 y2 … ym]) = [z1 z2 … zn+m]
where z1  z2  …  zn+m if

if x1  x2  …  xn and y1  y2  …  ym

(mrg (cons x xs) (cons y ys)) = (cons x (mrg xs (cons y ys))) {xy}
(mrg (cons x xs) (cons y ys)) = (cons y (mrg (cons x xs) ys)) {yx}
(mrg xs nil) = xs {mg0}
(mrg nil ys) = ys {mg1}

fo
rm

al
 d

ef
in

it
io

n

Fourth Halmstad Summer School on Testing - June 9-12, 2014 24

Fourth Halmstead Summer School on
Testing June 2014

6/10/2014

Rex Page – Univ of Oklahoma 5

definitional properties of merge-sort

Merge-sort
(msort [x1 x2… xn] = [z1 z2 … zn]
where z1  z2  …  zn

and [z1 z2 … zn] is a permutation of = [z1 z2 … zn]

(msort []) = [] {ms0}
(msort [x]) = [x] {ms1}
(msort [x1 x2… xn]) = (mrg (msort [x1 x2… xn/2] {ms2}

(msort [x n/2+1 … xn]))

Fourth Halmstad Summer School on Testing - June 9-12, 2014 25

One of our expectations is
 (up(msort xs))

any split putting half of the
elements in one list and half

in the other is okay

definitional properties of merge-sort

Merge-sort
(msort [x1 x2… xn] = [z1 z2 … zn]
where z1  z2  …  zn

and [z1 z2 … zn] is a permutation of = [z1 z2 … zn]

(msort []) = [] {ms0}
(msort [x]) = [x] {ms1}
(msort [x1 x2… xn]) = (mrg (msort [x1 x2… xn/2] {ms2}

(msort [x n/2+1 … xn]))

Fourth Halmstad Summer School on Testing - June 9-12, 2014 26

One of our expectations is
 (up(msort xs))

(defthm dmx-reduces-len-thm ; lemma, msort termination
(implies (consp (rest xs))

(and (< (len(first(dmx xs))) (len xs))
(< (len(second(dmx xs))) (len xs)))))

maybe ACL2 doesn’t know dmx reduces the list length

Merge-sort, with termination lemma

Fourth Halmstad Summer School on Testing - June 9-12, 2014 27

(defun msort (xs)
(declare ; suggest using lemma to prove termination
(xargs :measure (len xs)

:hints (("Goal"
:use ((:instance dmx-reduces-len))))))

(if (consp(rest xs)) ; (len xs) > 1?
(let* ((odds-evens (dmx xs)) ; xs = [x1 x2 ...]

(odds (first odds-evens))
(evns (second odds-evens)))

(mrg (msort odds) (msort evns))) ; {ms2}
xs)) ; xs = [x1] or empty {ms1}

(defthm dmx-reduces-len ; lemma, msort termination
(implies (consp (rest xs))

(and (< (len(first(dmx xs))) (len xs))
(< (len(second(dmx xs))) (len xs)))))

The End

June 12, 2014
9:30-10:30 session

