Embedded Systems
S E Innovation BY TNO

o
4, s
o'"lﬂe-?e’

Model-Based Testing
with Labelled Transition Systems

There is Nothing More Practical
than a Good Theory

Jan Tretmans

TNO - EST Radboud University
Eindhoven, NL Nijmegen, NL

jan.tretmans@tno.nl

Embedded Systems

Model-Based Testing Innovation svno

with Labelled Transition Systems (LTS)

Overview of a Theory

Models LTS
“ Comparing LTS

¢ equivalences
%" Correctness

¢ implementation relation

¢ ioco

“ Testing LTS
¢+ test generation

¢ test execution

“ Correctness & Testing
¢ soundness

¢ exhaustiveness

= SUT: Black-Box & Formal

¢ test assumption

¥~ Consequences
¢ (non) compositionality

¢ variations of ioco

- Embedded Systems
Innovation BY TNO

Labelled Transition Systems

Labelled Transition Systems

Labelled Transition System (S, L, T, sp)

states / \ initial state
soUS

actions transitions
TOSx(LO{t}) xS

N Coffee

Coin Alarm Button

5@ il

Button

© Jan Tretmans

Labelled Transition Systems

© Jan Tretmans

Labelled Transition Systems

» Sl transition

10c coffee transition
52 > 53 composition

T
20c tea ~ executable
$54 >

sequence

tea 2
SO Oc SOLT/ ~_ hon-executable

<5 - sequence

L = {10c, 20c LTS(L) all transition
coffee, tea, soup} systems over L

© Jan Tretmans 6

Labelled Transition Systems

Sequences of observable actions:

traces(s) = { oOL* | s =% }
traces(s) = {¢&, 10c, 10c coffee, 10c tea}
Reachable states:

saftero = { s | s =25}
safter10c = {si1,s2}

s after 10c tea = {54}

© Jan Tretmans

© Jan Tretmans

Representation of LTS

= Explicit :
({50,51,52,53},
{10c,coffee,tea},
{ (50,10c,S1), (S1,coffee,S2), (S1,1ea,S3) },

s0)
“ Transition tree / graph

%~ Language / behaviour expression :

S := 10c; (coffee ; stop [] tea; stop)

Representation of LTS

a;(b;stop [1c; stop) a;b;stop []1a:c;stop

a;b;stop ||| c;d;stop

© Jan Tretmans

Representation of LTS

Q, where
Q:i=a;(b:stop ||| Q)

P, where
Pi=a:P

© Jan Tretmans

- Embedded Systems
Innovation BY TNO

Equivalences on

Labelled Transition Systems

Observable Behaviour

" Some fransition systems are more equal than others ™

© Jan Tretmans

Comparing Transition Systems

environment environment

%" Suppose an environment interacts with the systems:

¢ the environment tests the system as black box
by observing and actively controlling it;

¢ the environment acts as a tester;

= Two systems are equivalent if they pass the same tests.

© Jan Tretmans

Trace Equivalence

environment environment

= traces (S1) = traces (S2)

Traces: traces (8) = { oOL* | s== }

© Jan Tretmans

Trace Equivalence

© Jan Tretmans

Completed Trace Equivalence

?ch‘

© Jan Tretmans

Completed Trace Equivalence

© Jan Tretmans

(Completed) Trace Equivalence :
Others ?

>

Comparing Systems :
Testing Equivalence

; -

abV

Sl afwses {b} S2 after a refuses {b}

© Jan Tretmans

Testing Equivalence

#‘re

© Jan Tretmans

Testing Equivalence

p =te q

Buft:
if you want coffee you will eventually always succeed in q but not p 1?

© Jan Tretmans 21

Refusal Equivalence
q

O only possible
if nothing else is possible

coin O bang coffee v [obs (p || t)
coin O bang coffee v [obs(q || t)

p Frf q

© Jan Tretmans

Equivalences on Transition Systems

isomorphism

bisimulation
(weak

failure trace
= refusal

failures
= testing

completed
trace

trace

© Jan Tretmans

now you need to observe T's

test an LTS with another LTS, and
undo, copy, repeat as often as you like

test an LTS with another LTS, and
try again (continue) after failure

test an LTS with another LTS

observing sequences of actions and
their end

observing sequences of actions

Examples

0
Q
Q
<
Y
)
2
=)
o
w

© Jan Tretmans

Embedded Systems
Innovation BY TNO

Non-Equivalence Relations

on Labelled Transition Systems

Implementation Relations
Conformance Relations
Refinement Relations
Pre-Orders

Preorders on Transition Systems

implementation
i

environment environment
e e

#" Suppose an environment interacts with the black box
implementation i and with the specification s :

¢ i correctly implements s
if all observation of i can be related to observations of s

© Jan Tretmans

Trace Preorder

implementation
i

environment environment
e

traces (1) [traces(S)

Traces: traces (s) = { o OL* | s=2s }

© Jan Tretmans

Trace Preorder

| <trs
traces(i) L] traces(s)

© Jan Tretmans

Trace Preorder

| Strs =
traces(i) L] traces(s)

© Jan Tretmans

Embedded Systems
Innovation

Implementation Relation 10CO

for Labelled Transition Systems
with Inputs and Outputs

Input-Output Transition Systems

L; = {?10c, ?20c }
Ly = {|coffee, Itea}

© Jan Tretmans

10c, 20c

from user to machine
initiative with user
machine cannot refuse

coffee, tea

from machine to user
initiative with machine
user cannot refuse

output

Input-Output Transition Systems

L; = {?10c, ?20c }
Ly = {|coffee, Itea}

© Jan Tretmans

Input-Output Transition Systems
IOTS (L Ly) O LTS(L;DOLy)

IOTS is LTS with Input-Output
and always enabled inputs:

for all states s,

for all inputs ?a O L;:

Input-Output Transition Systems
with ioco

implementation ioco
i
e e

L IOTS(LI,Lu) s [LTS(LI,Lu)
ioco O IOTS (LI'LU) x LTS (LI'LU)

Observing IOTS where system inputs
interact with environment outputs, and v.v.

© Jan Tretmans

Correctness
Implementation Relation 10CO

liocos =y, Uo O Straces(s): out (i after o) O out (s after o)

p—2.p D!xDLUD{T}.p_!éL

Straces (s) { o OWLO{®))* | s= }
p after o {p | p==p}

out(P) {IxOLy | pX, pOP} O {8 | p-Lsp, pOP)

© Jan Tretmans

Correctness
Implementation Relation 10CO

liocos =y, Uo O Straces(s): out (i after o) O out (s after o)

Intuition:
| ioco-conforms to s, iff

- if i produces output x aftfer trace o,
then s can produce x after o

- if i cannot produce any output after trace o,
then s cannot produce any output after o (guiescence O)

© Jan Tretmans 35

Correctness
Implementation Relation 10CO

liocos =y, Uo O Straces(s): out (i after o) O out (s after o)

p—2.p D!xDLUD{T}.p_!éL

Straces (s) { o OWLO{®))* | s= }
p after o {p | p==p}

out(P) {IxOLy | pX, pOP} O {8 | p-Lsp, pOP)

© Jan Tretmans

Implementation Relation

. AcO
\C

© Jan Tretmans

Implementation Relation 10CO

liocos =y, Uo O Straces(s): out(i after o) O out (s after o)

/ 10CO S

?10c

b?lOc

lcoffee

b?lOc

out (/after 210¢c.?10c) = out (s after ?10c.?10c) = {lteaq, Icoffee }
out (7 after 210c.0.210¢) = { Icoffee } # out (s after 210c.0.210c) = { !teq, coffee }

© Jan Tretmans 38

Implementation Relation i10CO

implementation

specification
\ models

ly
(ly? - x| <0.001)

LTS and ioco allow:
* hon-determinism
* under-specification

* the specification of properties
rather than construction

© Jan Tretmans

Genealogy of 10CO

Labelled Transition Systems

IO0TS
(IOA, IOSM, IOLTS)

CGNO”'ggrl‘];res’rer Tes’régge%c')qlaué/gsnces Quiescent Trace Preorder

Repetitive Quiescent
Trace Preorder
(Suspension Preorder)

Refusal Equivalence
(Preorder)

© Jan Tretmans

Model Based Testing
with Transition Systems

| i0CO S
i ioco s

| SUT
exhausf/veﬂ U sound S 11 i - behavi ng as
| 0IOTSOLTS

T(s) Il i - pass

pass fail

- Embedded Systems
Innovation BY TNO

Test Cases, Test Generation,
and Test Execution

for Labelled Transition Systems

Test Generation

liocos =y, Uo O Straces(s): out (i after o) O out (s after o)

S I test

/

pass pass fail

out (s after o) out (i after o) out (fest after o)=L,
={Ix,ly} ={Ix, 1z}

© Jan Tretmans

Test Generation

liocos =y, Uo O Straces(s): out (i after o) O out (s after o)

S / fest

?X?Yl,\?f\e*

! |x
V&Y :% /\'Z :% pass pass fail pass

out (s after o) out (i after o) out (fest after o)

= {Ix,ly, 5} ={Ix,12,8) =L, 0{0)

© Jan Tretmans 44

Test Cases

Model of a test case
= fransition system :

labels in L O {0}

e 'quiescence’ label 6
tree-structured
‘finite’, deterministic
sink states pass and fail
from each state:
* either one input la and all outputs ?x

* or all outputs ?x and 6

pass el
OO O e

Ly O {6} L, O {6}

© Jan Tretmans

pass fail

Test Generation Algorithm

Algorithm

To generate a test case 7(S) from a transition system
specification S, with S# O: set of states (initially S = s, after €)

Apply the following steps recursively, non-deterministically:

1 end test case 3 observe all outputs

o EEE forbidden outputs allowed outputs

?X

2 supply input la
forbidden outputs allowed outputs

(S after Ix)

allowed outputs (or d): Ix Dout(S)

7(Safter!x) ¢orbidden outputs (or 8): ly Dout(S)

(S after?az0)

© Jan Tretmans 46

Test Generation Example

l?lOc

ltea lcoffee 6
?tea

pass fail fail
A \\?choc

?tea

fail fail pass fail

© Jan Tretmans

Test Generation Example

pass

© Jan Tretmans

Test Execution Example

0

?tea

pass fail fail

?choc
?tea e

Two test runs :
fail fail pass fail
+ i 10c tea -~ passTIi'

/

[AR TR T i fails

© Jan Tretmans

Test Execution

Test execution = all possible parallel executions (test runs) of
test T with implementation i going to state pass or fail

Testrun: 111 i =25 pass1l i’ or 11 i=2s failll i’

T

I _t

© Jan Tretmans

Model Based Testing
with Transition Systems

| i0CO S
i ioco s

| SUT
exhausf/veﬂ U sound S 11 i - behavi ng as
| 0IOTSOLTS

T(s) Il i - pass

pass fail

- Embedded Systems
S Innovation BY TNO

4, s
oﬂlﬂefe’

Soundness and Exhaustiveness

Validity of Test Generation

For every test t generated with algorithm we have:

" Soundness :
t will never fail with correct implementation

i ioco s implies | passes t

& Exhaustiveness :
each incorrect implementation can be detected
with a generated test t

i i% S implies Ot: ifailst

© Jan Tretmans

Model Based Testing
with Transition Systems

| i0CO S
i ioco s

| SUT
exhausf/veﬂ U sound S 11 i - behavi ng as
| 0IOTSOLTS

T(s) Il i - pass

pass fail

- Embedded Systems
Innovation BY TNO

Test Assumption

(Test Hypothesis)

Comparing Transition Systems:
An Implementation and a Model

—

environment environment
e e

IUT = iyt o HOeOE. obs(e IUT) = obs(e ityt)

Formal Testing : Test Assumption

Test assumption :
O zut. Oigyr O MOD.

[1+ [0 TEST. IUT passest < Iy T passes t

E—

© Jan Tretmans

Completeness of Formal Testing

?
IUT passes T, < IUT conftos

IUT passes Tg
IUT passes T, <4 Ut 0L T,. IUT passes t

L+ U Tg. IUT passes t
Test assumption: LIt LI TEST.IUT passest <« Iy tpasses t
< L+ 0 Tg.iryr passes T
Proof obligation: LI i LIMOD (L t+ LI T,.ipassest) < iimp s
< gyt imp s
Definition: IUT confto s
< IUT confto s

© Jan Tretmans

Formal Testing with Transition Systems

Test assumption :
OIuTOIMP . O, OIOTS .

TD: L‘.IE?S OtOTEST. IUT passes t
- H{TS) = iyt passes t

Proof soundness and exhaustiveness:
LiOIOTS.
(Ot0 T(s) . i passes 1)

[] be'hSVIir(‘)gTaSS < iioco s
|

SUT ioco s
F:CGSTIS exhaustive ﬂ U sound
ai
SUT || T(s) — pass

© Jan Tretmans

Model-Based Testing :
There is Nothing More Practical
than a Good Theory

A well-defined and sound testing theory brings:

% Arguing about validity of test cases

and correctness of test generation algorithms
% Explicit insight in what has been tested, and what not

Use of complementary validation techniques: model checking, theorem

proving, static analysis, runtime verification,

% Implementation relations for nondeterministic, concurrent,

partially specified, loose specifications

" Comparison of MBT approaches and error detection capabilities

© Jan Tretmans

- Embedded Systems
Innovation BY TNO

A Consequence of i0co:
(Non) Compositionality

Compositional skesting

?but Sbut

lerr

zer
i)]

© Jan Tretmans

Compositional Testing

1 10CO S

1, 10CO S,

I I
ig] 5 i}‘é s; || s,

If s, s, input enabled - s;, s, 0 IOTS - then ioco is preserved |

© Jan Tretmans 63

- Embedded Systems
Innovation BY TNO

Variations of 10CO

Testing Transition Systems: Variations

model test case
with data

and time

and hybrid

and action
refinement

[n=35]- [n=50]->
? buttonl ? button?

[¥ZzD1D-] ->
| coffee

© Jan Tretmans

Variations on a Theme

i ioco s < o U Straces(s): out (i after d) L out(s after o)

<,rs < UoU(LDO{O})*: out(iafterc) U out(s after o)
i ioconf s < [o U traces(s) : out (i after o) LI out(s after o)
i iocops <= LHolUF : out (i after d) [out(s after 0)

i uiocos <« [lo U Utraces(s): out(iafter o) L1 out(s after 0)
| mioco s multi-channel ioco

| wioco s non-input-enabled ioco

| eco e environmental conformance

| sioco s symbolic ioco

. (I")‘l’iOCO S (I"CGI) timed tioco (Aalborg, Twente, Grenoble, Bordeaux,. . . .)
| iocop S refinement ioco

i hioco s hybrid ioco

| gioco s quantified ioco

© Jan Tretmans « « « o

- Embedded Systems
Innovation BY TNO

Symbolic ioco

out I m: int
[O<m<-n]

© Jan Tretmans

Transition System with Data

unfolding

out I m:int out1 out;
[O<m<n]

Disadvantages:
“infinity
% |oss of information
(e.g. for test selection)

Symbolic Transition System

location interaction
\m / variable
_ o Lo §
STS. switch in?n:int o date
=TS with explicit vizn P

mappin
data, variables and \loca‘rion PpPIng

) ate
constraints 9 variable

“ Data:
first order logic
= Finite, symbolic
representation \ el
restriction

out I m: int out ' m: int
[O<m<-v] [O<m<v]

Symbolic Transition System

semantics

Symbolic Transitions

@ Generalised switch relation

in? true v:=ni
|o > |1

out!l 0<ma<v VizV

l1 s |3

| in? out! O<m2<n; vi=ng . |3
o) -

Symbolic states

(l1, [true], vi=n)
(l2, [0<mz2<-n1], vi=ny)
(13, [0<m2<ni], vi=ny)

Symbolic Trace, After, . . .

Symbolic suspension trace

pair of (sequence of gates,
formula over indexed interaction
variables and location variables)

Symbolic afters

<symbolic state> afters <symbolic suspension trace>

Lemma

[[<symbolic state> afters <symbolic suspension trace>]]

[[<symbolic state>]] after [[<symbolic suspension trace>]]

Symbolic 10CO

Specification: IOSTS S(ts) = (Lgs,ls,Vs,I,A,—s)

Implementation: I0STS P(tp) = (Lp,lp.Vp,I,A,—p)

both initialised, implementation input-enabled, Vg N Vp = ()

Fs: aset of symbolic extended traces satistying [F], . € Straces((lo,¢));

P(tp) siocor, S(ts) iff

Y(o,x)eFs YAs€Ay U {8} : tpUg = Ffuz(d)(zp./\é,o) Ax — D(ls,As,0))
where @(&, A5, 0) \/{\,,/\z | (As, @, Y¥)eouts((&, T,id)oafters(o, T))}

Theorem 1.

P(tp) siocor, S(ts) iff [P] >

© Jan Tretmans

- Embedded Systems
Innovation BY TNO

Real Time ioco

Real-Time Model-Based Testing

“ In many systems real-time properties are crucial
= Approach:
¢+ Extension of IOTS/ioco theory
« Timed Input Output Transition Systems (TIOTS)
e Timed Implementation Relations: build on ioco
 Concentrate on implementation relations: no test generation

% Challenges:
¢ Is time input or output ?

¢+ Quiescence: How long is there never eventually no output?

© Jan Tretmans

Timed Input-Output Transition Systems

®
?but | ¢c:=0

x c<10

lcoffee| c>=5

g

Constraints:
-time additivity

-null delay

time determinism

‘no divergence

‘progress: no forced inputs

TIOTS: (Q, L1, Ly, R0, T, qp)

Observable actions: L, Ly
delay d [0 Rxo

Unobservable action: T

Specifications are TIOTS

Implementations are assumed
to behave as input-enabled TIOTS

The Untimed Implementation Relation ioco

liocos =y, Uo O fraces(s): out(i after o) O out (s after o)

l l l

Straces after out

5(p) O Ix OL, O {1} p_‘§4.

Straces(s) { cO(LO{0}) | s== }

out(p) { xOLy | p=X5 3 O (3] 3(p))
out(P) L1 { out(p) |pOP }

p after o {p | p==p}

© Jan Tretmans

A Timed Implementation Relation

liocos =y, Uo O fraces(s): out(i after o) O out (s after o)

! ! ! l
tiocoy ? ? ?

A Timed Implementation Relation

liocos =y, Uo O fraces(s): out(i after o) O out (s after o)

l l l l

tioco ffraces after, out;

5(p) X

ttraces (s) { 0 O(LORx)* | s=%= }

out, (p) { xOLyORx | p =25}

p after;o {p| p==p, cO(LOR0)*}

© Jan Tretmans

A Timed Implementation Relation tioco

¥ c:=0
WA
c<=7/

?but | ¢:=0

x c<10

‘ c<9

lcoffee| c>=7

3

© Jan Tretmans

Not Just Adding Extra Constraints:
Unbounded Delay

*And suppose you wish
to reject this TUT:
how long would you wait ?

-Untimed ioco:
quiescence to express
that there eventually is
lcoffee

*But when is eventually ?

© Jan Tretmans

© Jan Tretmans

