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Embedded Systems

Model-Based Testing Innovation  svno

with Labelled Transition Systems (LTS )

Overview of a Theory

# Models LTS
“ Comparing LTS

¢ equivalences
%" Correctness

¢ implementation relation

¢ ioco

“ Testing LTS
¢+ test generation

¢ test execution

“ Correctness & Testing
¢ soundness

¢ exhaustiveness

= SUT: Black-Box & Formal

¢ test assumption

¥~ Consequences
¢ (non) compositionality

¢ variations of ioco
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Labelled Transition Systems

Labelled Transition System (S, L, T, sp)

states / \ initial state
soUS

actions transitions
TOSx(LO{t}) xS

N Coffee

Coin Alarm Button

5@ il

Button
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Labelled Transition Systems
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Labelled Transition Systems

» Sl transition

10c coffee transition
52 > 53 composition

T
20c tea ~ executable
$54 >

sequence

tea 2
SO Oc SOLT/ ~_ hon-executable

<5 - sequence

L = {10c, 20c LTS(L) all transition
coffee, tea, soup} systems over L

© Jan Tretmans 6




Labelled Transition Systems

Sequences of observable actions:

traces(s) = { oOL* | s =% }
traces(s) = {¢&, 10c, 10c coffee, 10c tea}
Reachable states:

saftero = { s | s =25}
safter10c = {si1,s2}

s after 10c tea = {54}
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Representation of LTS

= Explicit :
( {50,51,52,53},
{10c,coffee,tea},
{ (50,10c,S1), (S1,coffee,S2), (S1,1ea,S3) },

s0)
“ Transition tree / graph

%~ Language / behaviour expression :

S := 10c; ( coffee ; stop [] tea; stop)




Representation of LTS

a;(b;stop [1c; stop) a;b;stop []1a:c;stop

a;b;stop ||| c;d;stop
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Representation of LTS

Q, where
Q:i=a;(b:stop ||| Q)

P, where
Pi=a:P
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Observable Behaviour

" Some fransition systems are more equal than others ™
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Comparing Transition Systems

environment environment

%" Suppose an environment interacts with the systems:

¢ the environment tests the system as black box
by observing and actively controlling it;

¢ the environment acts as a tester;

= Two systems are equivalent if they pass the same tests.
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Trace Equivalence

environment environment

=  traces (S1) = traces (S2)

Traces: traces (8) = { oOL* | s== }
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Trace Equivalence
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Completed Trace Equivalence

?ch‘
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Completed Trace Equivalence
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(Completed) Trace Equivalence :
Others ?

>




Comparing Systems :
Testing Equivalence

; -

abV

Sl afwses {b} S2 after a refuses {b}
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Testing Equivalence

#‘re

© Jan Tretmans




Testing Equivalence

p =te q

Buft:
if you want coffee you will eventually always succeed in q but not p 1?

© Jan Tretmans 21




Refusal Equivalence
q

O only possible
if nothing else is possible

coin O bang coffee v [ obs (p || t)
coin O bang coffee v [ obs(q || t)

p Frf q

© Jan Tretmans




Equivalences on Transition Systems

isomorphism

bisimulation
( weak

failure trace
= refusal

failures
= testing

completed
trace

trace

© Jan Tretmans

now you need to observe T's

test an LTS with another LTS, and
undo, copy, repeat as often as you like

test an LTS with another LTS, and
try again (continue) after failure

test an LTS with another LTS

observing sequences of actions and
their end

observing sequences of actions




Examples
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Non-Equivalence Relations

on Labelled Transition Systems

Implementation Relations
Conformance Relations
Refinement Relations
Pre-Orders




Preorders on Transition Systems

implementation
i

environment environment
e e

#" Suppose an environment interacts with the black box
implementation i and with the specification s :

¢ i correctly implements s
if all observation of i can be related to observations of s
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Trace Preorder

implementation
i

environment environment
e

traces (1) [ traces(S)

Traces: traces (s) = { o OL* | s=2s }
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Trace Preorder

| <trs
traces(i) L] traces(s)
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Trace Preorder

| Strs =
traces(i) L] traces(s)
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with Inputs and Outputs




Input-Output Transition Systems

L; = {?10c, ?20c }
Ly = {|coffee, Itea}

© Jan Tretmans

10c, 20c

from user to machine
initiative with user
machine cannot refuse

coffee, tea

from machine to user
initiative with machine
user cannot refuse

output




Input-Output Transition Systems

L; = {?10c, ?20c }
Ly = {|coffee, Itea}

© Jan Tretmans

Input-Output Transition Systems
IOTS (L Ly) O LTS(L;DOLy)

IOTS is LTS with Input-Output
and always enabled inputs:

for all states s,

for all inputs ?a O L;:




Input-Output Transition Systems
with ioco

implementation ioco
i
e e

L IOTS(LI,Lu) s [ LTS(LI,Lu)
ioco O IOTS (LI'LU) x LTS (LI'LU)

Observing IOTS where system inputs
interact with environment outputs, and v.v.
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Correctness
Implementation Relation 10CO

liocos =y, Uo O Straces(s): out (i after o) O out (s after o)

p—2.p D!xDLUD{T}.p_!éL

Straces (s ) { o OWLO{®))* | s= }
p after o {p | p==p}

out(P) {IxOLy | pX, pOP} O {8 | p-Lsp, pOP)
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Correctness
Implementation Relation 10CO

liocos =y, Uo O Straces(s): out (i after o) O out (s after o)

Intuition:
| ioco-conforms to s, iff

- if i produces output x aftfer trace o,
then s can produce x after o

- if i cannot produce any output after trace o,
then s cannot produce any output after o ( guiescence O )

© Jan Tretmans 35




Correctness
Implementation Relation 10CO

liocos =y, Uo O Straces(s): out (i after o) O out (s after o)

p—2.p D!xDLUD{T}.p_!éL

Straces (s ) { o OWLO{®))* | s= }
p after o {p | p==p}

out(P) {IxOLy | pX, pOP} O {8 | p-Lsp, pOP)

© Jan Tretmans




Implementation Relation

. AcO
\C
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Implementation Relation 10CO

liocos =y, Uo O Straces(s): out(i after o) O out (s after o)

/ 10CO S

?10c

b?lOc

lcoffee

b?lOc

out (/after 210¢c.?10c) = out (s after ?10c.?10c) = {lteaq, Icoffee }
out (7 after 210c.0.210¢) = { Icoffee } # out (s after 210c.0.210c) = { !teq, coffee }
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Implementation Relation i10CO

implementation

specification
\ models

ly
( ly? - x| <0.001)

LTS and ioco allow:
* hon-determinism
* under-specification

* the specification of properties
rather than construction

© Jan Tretmans




Genealogy of 10CO

Labelled Transition Systems

IO0TS
(IOA, IOSM, IOLTS)

CGNO”'ggrl‘ ];res’rer Tes’régge%c')qlaué/gsnces Quiescent Trace Preorder

Repetitive Quiescent
Trace Preorder
(Suspension Preorder)

Refusal Equivalence
(Preorder)
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Model Based Testing
with Transition Systems

| i0CO S
i ioco s

| SUT
exhausf/veﬂ U sound S 11 i - behavi ng as
| 0IOTSOLTS

T(s) Il i - pass

pass fail
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Test Cases, Test Generation,
and Test Execution

for Labelled Transition Systems




Test Generation

liocos =y, Uo O Straces(s): out (i after o) O out (s after o)

S I test

/

pass pass fail

out (s after o) out (i after o) out (fest after o)=L,
={Ix,ly} ={Ix, 1z}
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Test Generation

liocos =y, Uo O Straces(s): out (i after o) O out (s after o)

S / fest

?X?Yl,\?f\e*

! |x
V&Y :% /\'Z :% pass pass fail pass

out (s after o) out (i after o) out (fest after o)

= {Ix,ly, 5} ={Ix,12,8 ) =L, 0{0)
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Test Cases

Model of a test case
= fransition system :

labels in L O {0}

e 'quiescence’ label 6
tree-structured
‘finite’, deterministic
sink states pass and fail
from each state:
* either one input la and all outputs ?x

* or all outputs ?x and 6

pass el
OO O e

Ly O {6} L, O {6}

© Jan Tretmans

pass fail




Test Generation Algorithm

Algorithm

To generate a test case 7(S) from a transition system
specification S, with S# O: set of states (initially S = s, after €)

Apply the following steps recursively, non-deterministically:

1 end test case 3 observe all outputs

o EEE forbidden outputs allowed outputs

?X

2 supply input la
forbidden outputs allowed outputs

(S after Ix)

allowed outputs (or d): Ix Dout(S)

7(Safter!x)  ¢orbidden outputs (or 8): ly Dout(S)

(S after?az0)

© Jan Tretmans 46




Test Generation Example

l?lOc

ltea lcoffee 6
?tea

pass fail fail
A \\?choc

?tea

fail  fail pass fail
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Test Generation Example

pass
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Test Execution Example

0

?tea

pass fail fail

?choc
?tea e

Two test runs :
fail  fail pass fail
+ i 10c tea -~ passTIi'

/

[ AR TR T i fails

© Jan Tretmans




Test Execution

Test execution = all possible parallel executions (test runs) of
test T with implementation i going to state pass or fail

Testrun: 111 i =25 pass1l i’ or 11 i=2s failll i’

T

I _t

© Jan Tretmans




Model Based Testing
with Transition Systems

| i0CO S
i ioco s

| SUT
exhausf/veﬂ U sound S 11 i - behavi ng as
| 0IOTSOLTS

T(s) Il i - pass

pass fail
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Validity of Test Generation

For every test t generated with algorithm we have:

" Soundness :
t will never fail with correct implementation

i ioco s implies | passes t

& Exhaustiveness :
each incorrect implementation can be detected
with a generated test t

i i% S implies Ot: ifailst

© Jan Tretmans




Model Based Testing
with Transition Systems

| i0CO S
i ioco s

| SUT
exhausf/veﬂ U sound S 11 i - behavi ng as
| 0IOTSOLTS

T(s) Il i - pass

pass fail
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Test Assumption

(Test Hypothesis)




Comparing Transition Systems:
An Implementation and a Model

—

environment environment
e e

IUT = iyt o HOeOE. obs(e IUT) = obs(e ityt)




Formal Testing : Test Assumption

Test assumption :
O zut. Oigyr O MOD.

[1+ [0 TEST. IUT passest < Iy T passes t

E—

© Jan Tretmans




Completeness of Formal Testing

?
IUT passes T, < IUT conftos

IUT passes Tg
IUT passes T, <4 Ut 0L T,. IUT passes t

L+ U Tg. IUT passes t
Test assumption: LIt LI TEST.IUT passest <« Iy tpasses t
< L+ 0 Tg.iryr passes T
Proof obligation: LI i LIMOD (L t+ LI T,.ipassest) < iimp s
< gyt imp s
Definition: IUT confto s
< IUT confto s

© Jan Tretmans




Formal Testing with Transition Systems

Test assumption :
OIuTOIMP . O, OIOTS .

TD: L‘.IE?S OtOTEST. IUT passes t
- H{TS) = iyt passes t

Proof soundness and exhaustiveness:
LiOIOTS.
(Ot0 T(s) . i passes 1)

[ ] be'hSVIir(‘)gTaSS < iioco s
|

SUT ioco s
F:CGSTIS exhaustive ﬂ U sound
ai
SUT || T(s) — pass
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Model-Based Testing :
There is Nothing More Practical
than a Good Theory

A well-defined and sound testing theory brings:

% Arguing about validity of test cases

and correctness of test generation algorithms
% Explicit insight in what has been tested, and what not

# Use of complementary validation techniques: model checking, theorem

proving, static analysis, runtime verification,

% Implementation relations for nondeterministic, concurrent,

partially specified, loose specifications

" Comparison of MBT approaches and error detection capabilities

© Jan Tretmans




- Embedded Systems
Innovation BY TNO

A Consequence of i0co:
(Non) Compositionality




Compositional skesting

?but Sbut

lerr

zer
i) ]
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Compositional Testing

1 10CO S

1, 10CO S,

I I
ig ] 5 i}‘é s; || s,

If s, s, input enabled - s;, s, 0 IOTS - then ioco is preserved |

© Jan Tretmans 63
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Testing Transition Systems: Variations

model test case
with data

and time

and hybrid

and action
refinement

[n=35]- [n=50]->
? buttonl ? button?

[¥ZzD1D-] ->
| coffee

© Jan Tretmans




Variations on a Theme

i ioco s < o U Straces(s): out (i after d) L out( s after o)

<,rs < UoU(LDO{O})*: out(iafterc) U out(s after o)
i ioconf s < [o U traces(s) : out (i after o) LI out( s after o)
i iocops <= LHolUF : out (i after d) [ out( s after 0)

i uiocos <« [lo U Utraces(s): out(iafter o) L1 out( s after 0)
| mioco s multi-channel ioco

| wioco s non-input-enabled ioco

| eco e environmental conformance

| sioco s symbolic ioco

. (I")‘l’iOCO S (I"CGI) timed tioco (Aalborg, Twente, Grenoble, Bordeaux,. . . .)
| iocop S refinement ioco

i hioco s hybrid ioco

| gioco s quantified ioco

© Jan Tretmans « « « o
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out I m: int
[O<m<-n]

© Jan Tretmans

Transition System with Data

unfolding

out I m:int out1  out;
[O<m<n]

Disadvantages:
“infinity
% |oss of information
(e.g. for test selection)



Symbolic Transition System

location interaction
\m / variable
_ o Lo §
STS. switch in?n:int o date
=TS with explicit vizn P

mappin
data, variables and \loca‘rion PpPIng

) ate
constraints 9 variable

“ Data:
first order logic
= Finite, symbolic
representation \ el
restriction

out I m: int out ' m: int
[O<m<-v] [O<m<v]




Symbolic Transition System

semantics




Symbolic Transitions

@ Generalised switch relation

in? true v:=ni
|o > |1

out!l 0<ma<v VizV

l1 s |3

| in? out! O<m2<n; vi=ng . |3
o) -

Symbolic states

( l1, [true], vi=n )
(l2, [0<mz2<-n1], vi=ny )
( 13, [0<m2<ni ], vi=ny )




Symbolic Trace, After, . . .

Symbolic suspension trace

pair of ( sequence of gates,
formula over indexed interaction
variables and location variables )

Symbolic afters

<symbolic state> afters <symbolic suspension trace>

Lemma

[[ <symbolic state> afters <symbolic suspension trace> ]]

[[ <symbolic state> ]] after [[ <symbolic suspension trace> ]]




Symbolic 10CO

Specification: IOSTS S(ts) = (Lgs,ls,Vs,I,A,—s)

Implementation: I0STS P(tp) = (Lp,lp.Vp,I,A,—p)

both initialised, implementation input-enabled, Vg N Vp = ()

Fs: aset of symbolic extended traces satistying [F], . € Straces((lo,¢));

P(tp) siocor, S(ts) iff

Y(o,x)eFs YAs€Ay U {8} : tpUg = Ffuz(d)(zp./\é,o) Ax — D(ls,As,0))
where @(&, A5, 0) \/{\,,/\z | (As, @, Y¥)eouts((&, T,id)oafters(o, T))}

Theorem 1.

P(tp) siocor, S(ts) iff [P] >

© Jan Tretmans
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Real-Time Model-Based Testing

“ In many systems real-time properties are crucial
= Approach:
¢+ Extension of IOTS/ioco theory
« Timed Input Output Transition Systems (TIOTS)
e Timed Implementation Relations: build on ioco
 Concentrate on implementation relations: no test generation

% Challenges:
¢ Is time input or output ?

¢+ Quiescence: How long is there never eventually no output?

© Jan Tretmans




Timed Input-Output Transition Systems

®
?but | ¢c:=0

x c<10

lcoffee| c>=5

g

Constraints:
-time additivity

-null delay

time determinism

‘no divergence

‘progress: no forced inputs

TIOTS: (Q, L1, Ly, R0, T, qp)

Observable actions: L, Ly
delay d [0 Rxo

Unobservable action: T

Specifications are TIOTS

Implementations are assumed
to behave as input-enabled TIOTS




The Untimed Implementation Relation ioco

liocos =y, Uo O fraces(s): out(i after o) O out (s after o)

l l l

Straces after out

5(p) O Ix OL, O {1} p_‘§4.

Straces(s) { cO(LO{0}) | s== }

out(p) { xOLy | p=X5 3 O (3] 3(p) )
out( P) L1 { out(p) |pOP }

p after o {p | p==p}
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A Timed Implementation Relation

liocos =y, Uo O fraces(s): out(i after o) O out (s after o)

! ! ! l
tiocoy ? ? ?




A Timed Implementation Relation

liocos =y, Uo O fraces(s): out(i after o) O out (s after o)

l l l l

tioco ffraces after, out;

5(p) X

ttraces (s ) { 0 O(LORx)* | s=%= }

out, (p) { xOLyORx | p =25}

p after;o {p| p==p, cO(LOR0)*}
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A Timed Implementation Relation tioco

¥ c:=0
WA
c<=7/

?but | ¢:=0

x c<10

‘ c<9

lcoffee| c>=7

3
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Not Just Adding Extra Constraints:
Unbounded Delay

*And suppose you wish
to reject this TUT:
how long would you wait ?

-Untimed ioco:
quiescence to express
that there eventually is
lcoffee

*But when is eventually ?

© Jan Tretmans
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