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Overview
Model-Based Testing Model-Based Testing
Theory Practice
Jan Tretmans Machiel van der Bijl
« MBT: What and Why « MBT: Practical exercises

with Axini Test Manager

« MBT: A theory with labelled
transition systems and ioco e MBT: The difference between
theory and practice
e Variations:
— Test selection
— Test-based modelling
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Model-Based Testing
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(Software) Testing

checking or measuring
some quality characteristics
of an executing object

by performing experiments
In a controlled way
w.r.t. a specification

SUT

System Under Test
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Testing Complexity

X <

. [0..9]

testing effort grows exponentially with system size
testing cannot keep pace with development

10 ways that it can go wrong

10 combinations of inputs to check

. [0..9]
. [0..9]
. [0..9]

1000 ways that it can go wrong

: [0..9] ::. 100 ways that it can go wrong
: [0.9] 100 combinations of inputs to check

1000 combinations of inputs to check

Automation of testing is necessary
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Testing Challenges

Increasing complexity
* more functions, more interactions, more options and parameters

Increasing size
* Dbuilding new systems from scratch is not possible anymore
* integration of legacy-, outsourced-, off-the shelf components
« abstract from details: models

Blurring boundaries between systems
 more, and more complex interactions between systems
« systems dynamically depend on other systems, systems of systems

Blurring boundaries in time

* requirements analysis, specification, implementation, testing,
installation, maintenance overlap

* more different versions and configurations
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Model-Based Testing: Why

« Mastering increase in complexity, and quest for higher quality

— testing cannot keep pace with development

Software bugs / errors cost US economy yearly:
$ 59.500.000.000 ( )

$ 22 hillion could be eliminated...

» Dealing with models and abstraction
— model-based development: UML, MDA, Simulink/Matlab

* Promises better, faster, cheaper testing
— algorithmic generation of tests and test oracles: tools

— maintenance of tests through model modification
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Model-Based Testing ( MBT )

pass falil
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MBT : Black-Box Testing of Functionality

phases

accessibility

functionality

aspects
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Evolution of Testing

(5 ¥)Model-Based Testing

Keyword-Driven

Scripted

‘ Record & Playback
Manual Testing




Embedded Systems

Innovation BY TNO

Testing 1 : Manual Testing

1. Manual testing %?'
l System Under Test
pass falil
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Testing 2 : Scripted Testing

—E3

1. Manual testing

o

2. Scripted testing

pass fail
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Testing 3 : Keyword-Driven Testing

1. Manual testing
2. Scripted testing
3. Keyword testing

pass fail




Embedded Systems
Innovation BY TNO

Testing 4 : Model-Based Testing

1. Manual testing
2. Scripted testing

3. Programmed
testing

4. Model-based
testing pass fall
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Model-Based

Verification, Validation, Testing, .. ...
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Validation, Verification, and Testing

iInformal

requirements

informal world
validation

verification

(model-based) testing

real world
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Verification and Testing

Model-based verification : Model-based testing :

« formal manipulation e experimentation

e prove properties * show error

o performed on model e concrete system

formal concrete
world N ﬁ world

[

Verification is only as good as Testing can only show the

the validity of the model on presence of errors, not their

which it is based absence
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Models

Icoffee

?coin ?button

?button




Models: Labelled Transition Systems

Labelled Transition System: S, L, Ly, T, so

/ mitial State
states

transmons

input actions | o
output actions 7 = Input

I = output

Icoffee

?coin @ X) ?button

?button




A Theory of Model-Based Testing

with Labelled Transition Systems



Model-Based Testing

pass falil



MBT : Validity

SUT
conforms to
model

-

SUT passes tests

SUT
conforms to
model

pass falil



Models: Generation of Test Cases

specification test
model case

. Icoffee model

I coin

?coin lalarm

I button

?button



Models: Generation of Test Cases

specification
model

\d Icoffee

?coin lalarm

?button




MBT . Abstract from Scheduling Details

* Four components in parallel, in any order

task(start?, ready!) taskA := task (startA?, readyAl)

taskB = task (startB?, readyB!)

ready! taskC := task (startC?, readyC!)

start?
taskD := task (startD?, readyD!)

model := taskA ||| taskB ||| taskC ||| taskD



MBT . Abstract from Scheduling Details



MBT . Abstract from Scheduling Details



MBT . Nondeterminism, Underspecification

specification ?2Xx(x<0)
model
\ SUT models
? X (x>=0)
|
% .
(lyxy—x/< )

* non-determinism

» under-specification

 specification of properties >
rather than construction




MBT with LTS and 1oco

SUT ioco model

A input/output
= conformance
ﬁ ioco

set of
sound exhaustive LTS tests

SUT passes tests SUT

- behaving as

Input-enabled LTS

pass falil



MBT . Argue about Validity of Tests

S

specification
model

iio/os

&

| fails t

generated
test case

pass pass fall fail

Implementation




Model-Based Testing

with Labelled Transition Systems

There is Nothing More Practical

than a Good Theory



Overview

e MBT: Tools

« MBT: Under-specification

e MBT: Test selection
 MBT: Towards test selection for ioco
 Refinement for ioco

» Test-based modelling = Automata learning



Model-Based Testing

Tools



MBT : Off-Line - On-Line

pass falil



MBT : Off-Line = Batch

pass falil



MBT : On-Line = On-the-Fly

pass falil



Model-Based Testing :

Variations for Underspecification



Variations on a Theme

«liiocos U "sl Straces(s): out (iafters) [ out (s afters)
* iEfiorS U "sT (LE{d})*: out(iafters) I out(s afters)
« jioconfs U "s1 traces(s) : out(iafters) | out(s afters)
e iiocors U "s1 F: out (i afters) I out (s afters)
« | iuiocos U "s1 Utraces(s): out (iafters) [ out (s afters)
e imiocos multi-channel ioco

o | 1 wioco s non-input-enabled ioco

e iecoe environmental conformance

e |sSiocos symbolic ioco

 i(ntiocos (real) timed tioco (Aalborg, Twente, Grenoble, Bordeaux,.....
e iriocos refinement ioco

 ihiocos hybrid ioco

e jqiocos quantified ioco

e |pocos partially observable game ioco

e |stiocop S real time and symbolic data



Underspecification: ioco and uioco

i ioco s =4 ™ sIl Straces (s): out (i after s)ii out (s after s)

Implementation i i io/o S Specification s

| Uloco S




Underspecification: uioco

" si1 Straces (s): out (i after s)ii out (s after s)

| I0CO S =y

i uioco s =, "™ sll Utraces (s): out (i after s)il out (s after s)

Utraces (s) =
{ Si1 Straces (s) |
"s,?bs,=S:

s after s.R?1? >&p3P

A

2a?a | Straces (s) i

l0CO uioco

2a?a | Utraces (s)
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INn Model-Based Testing



Test Selection

* Exhaustiveness never achieved in practice

 Test selection = select subset of exhaustive test suite,
to achieve confidence in quality of tested product

— select best test cases capable of detecting failures

— measure to what extent testing was exhaustive : coverage

e Optimization problem

best possible testing « within cost/time constraints



Test Selection: Approaches

1. random
2. domain / application specific: test purposes, test goals, ...

3. model / code based: coverage

— usually structure based

test: al x?
O

? 28>f
100% 50%
O transition coverage




Towards Test Selection

In the 10co Framework



Test Selection for uioco

i uioco s =4 "™ sll Utraces (s): out (i after s)il out (s after s)

Selection of Sub-Set of UTraces

N\

e Select: M | Utraces (s)

e Test for: i uioco \y s

AN

U ™ siT M: out (i after s)ii out (s after s)

e Coverage: #M
# Utraces (S)




Test Selection for uioco

out (s after ?but ?but ) = out (s after ?but ?but )

i.e. if already tested for ?but @Gbut
what does testing for ?but @@E@0Out add ?

“but )Q out (s after ?but ) = {lcof, ltea, }

l.e. everything is allowed -

|
‘cof ?but what shall be tested then ?

ltea

The set Utraces is not minimal,
l.e., elements are dependent

?but



Test Selection for uioco

i uioco s =4 "™ sll Utraces (s): out (i after s)il out (s after s)

Take weaker specification s’
= Inverse of refinement

? E>p QA0
0 sut(s) | sut() SUTs

O {i|iuioco s} I {i]iuioco s’}



Test Selection for uioco

i uioco s =4 "™ sll Utraces (s): out (i after s)il out (s after s)

2 £>P AOSI>IsT (s) | suT (s)

O {i|iuioco s} I {i]iuioco s’}

Coverage: # SUT (S)
# SUT (S))

SUTs



Test Selection: Lattice of Specifications

& ST
o B /// \\\ ST
S; Is stronger than s, U e \ ° top element
sifs; U yd \ ° allows any impl.
C . e C . /! \\\ ®
{i|iuiocos, i {i|iuiocos,} \ chaos ¢
// S ) S3
Y yd E ‘\\\ | \\\ \\\
if specs are input-enabled e Vo \ \,
- i 4 e Sl \
then ioco is preorder e \ \
then £ ® uioco / .



Test Selection for uioco

i uioco s =4 "™ sll Utraces (s): out (i after s)il out (s after s)

2 £>P AOSI>IsT (s) | suT (s)

O {i|iuioco s} I {i]iuioco s’}

Requires refinement preorder
£ on specifications.

loco / uioco are not refinement
preorders and are only defined for
Input-enabled implementations



Set of Required Traces

Rtraces (s) =4 { SIT Utraces (s) |

IS not a substring of S,

S S does not end with >B>0

bt )O out (safters) LyE{ } }

lcof Sbut
ltea 2 2 .
but but | Rtraces (s)
?but .
@0 | Utraces (s)

?but



Set of Required Traces

Rtraces throw away superfluous traces, and only those

1. For input enabled implementations:

i uioco s =, ™ sll Utraces (s): out (i after s)ii out (s after s)

A

U ™ si1 Rtraces (s): out (i after s)ii out (s after s)

N

2. Rtraces is “minimal”: For A | Rtraces (s) and A  Rtraces (s),

there exists an input-enabled i such that

" siT A: out (i after s)il out (s after s)

and i ui//c;o S



From Required Traces to wioco

Refinement preorder £ is given by wioco ,
considering superfluous traces and non-input enabledness

s wioco s° =4; ™ sll Rtraces (s’) :
1. out (s after s) il out (s after s)
2. ™ s,£s: in (s afters;) E Rin (s afters,)
in (s after s;) =4 { adl L, | safters; must a? }

Rin (s’ after s;) =4

{ a?Al in (s afters,) | $s,i1 Rtraces (s'): s,a? £s, }



A Weaker Specification through wioco

A

s wioco s U >p2 >5405i(s')

?but

S’ Is a weaker than s:
- remove inputs
- add outputs

Icof

?but )O

?but



Required Traces Automaton

A

U

Si1 Rtraces (s)
S accepted by RTA(Ss)

RTA(S)

Icof
ltea

?but

Icof Itea @

?but

>@



MBT : Some Tools - ioco

>
[T
—
@

e AlIFTeC MaTelLo

e Autgli
e Axini Test Mana@'

e Conformiq Qtronic  °

 Cooper
e G" st .

 Gotch

NModel
ParTeG
Phact/The Kit
QuickCheck
Reactis
RT-Tester
SaMsTaG
SeppMed MBTsuite °
ing Certifylt




MBT : Some Tools - commercial

« AETG e NModel « STG

. Agatha e ParTeG o TestGen (Stirling)
o Agedis  Phact/The Kit

@MaTeLo

Au

¢ Axini Test Manager

» Conformiq Qtronic

« Coop
e G" st
« Gotcha
o JTorX

e Tveda



Learning

Test-Based Modelling






Models

Everybody wants models

Doing nice things with models

— model checking,
simulation, .....

How to get these models?

— In particular for:
legacy, third-party, out-sourced,
off-the-shelf, ..... components

Does the model correspond with
the real system?



Testing : Model-Based Testing

pass fall



Test-Based Modeling

pass fall



Test-Based Modeling

Automatically learning a model of the behavior
of a system from observations made with testing

 test-based modeling

* black-box
reverse engineering

» observation-based
modeling

* behavior capture
and test

e grammatical inference



Learning Models of Automata

Active learning Is an active research area:
D. Angluin (1987) : L*-algorithm
LearnLib : Tool for FSM learning

Learning Finite Automata with L* :

Teacher

Membership Queries

<€

Yes / No

Equivalence Queries

Learner

Yes / No + Counterexample >[




Learning Models of Reactive Systems

* Tool for active learning of Finite State Machines : LearnLib
* Developed by group B. Steffen (U. Dortmund)
e Able to learn models with up to 10.000 states

e Learner:
formulate
a hypothesis FSM

« Equivalence query
replaced by
model-based testing
of hypothesized model



Application: Banking Cards:
Learning the EMV protocol

Fides Aarts, Erik Poll, and Joeri de Ruiter

e EMV =
Europay, Mastercard and Visa

* Models from black-box implementations
« Learn behaviour blindly
e Security: absence of unwanted functionality

» Correctness/conformance:
presence of required functionality



Model of Maestro app on Dutch banking card



Model of Maestro app on German banking card

Dutch vs. German banking card:
different handling of errors



Learned Model of OCE Printer Module



Model-Based Testing & Test-Based Modeling

27 27
model world physical world



Test Coverage = Learninchrecision

chaos C S : precise, expensive

C : not precise, cheap




Model-Based Testing

There is Nothing More Practical

than a Good Theory



