Embedded Systems

Innovation BY TNO

9Ty
CrTev

a’q’lme-?&
Model-Based Testing

There is Nothing More Practical
than a Good Theory

m innovation
for life

Jan Tretmans Embedded Systems

Innovation BY TNO
TNO — ESI, Eindhoven, NL

and Radboud University, Nijmegen, NL

Embedded Systems

Innovation BY TNO

Jan Tretmans

Embedded Systems 2 3

Innovation BY TNO £ %
)
"’qﬂmefy
mwo 0 e
Embedded Systems Innovation
Eindhoven Radboud University

The Netherlands Nijmegen

The Netherlands

m innovation
for life

Embedded Systems :

Innovation BY TNO
technische
T U / e ufqivgrsite“ Radboud Universiteit Nijmegen {578
eindhoven
&
TUDelft

Noldus PHILIPS

Medical Systems

N Research T ivessbicit Toid
! X.{oun.dc.dbyphi“ps App“ed TeChnOIOQIeS Delft University of Technology
m)
THALES . . fragy
Technolution =5 pli P
e = PP o _: k‘J
AUTOMATION TECHNOLOGY . imec UlliUEl'Sitlj of Twente

The Netherlands

KATHOLIEKE UNIVERSITEIT

LEUVEN N "2
Universiteit

U Antwerpen

W
Y

ASML

“#:'FEl COMPANY"

""" Toois ror NANOTECH

N

vrije Universiteit amsterdam

TASS -’ g
UNIVHRSI‘['HI'T VAN AMS'I'}-‘.RDAM
€ DEMCON _ m
r—— Industrial Academic ,ECHNz:z*::i.j

Network

Network

Research cooperation with all Dutch

Research cooperation with leading Dutch
universities with embedded systems research

high-tech multinational industries & SME’s

[Research cooperation in EU projects J

Embedded Systems

Innovation BY TNO

Overview
Model-Based Testing Model-Based Testing
Theory Practice
Jan Tretmans Machiel van der Bijl
« MBT: What and Why « MBT: Practical exercises

with Axini Test Manager

« MBT: A theory with labelled
transition systems and ioco e MBT: The difference between
theory and practice
e Variations:
— Test selection
— Test-based modelling

Embedded Systems

Innovation BY TNO

Model-Based Testing

Embedded Systems

Innovation BY TNO

(Software) Testing

checking or measuring
some quality characteristics
of an executing object

by performing experiments
In a controlled way
w.r.t. a specification

SUT

System Under Test

Embedded Systems

Innovation BY TNO

Testing Complexity

X <

. [0..9]

testing effort grows exponentially with system size
testing cannot keep pace with development

10 ways that it can go wrong

10 combinations of inputs to check

. [0..9]
. [0..9]
. [0..9]

1000 ways that it can go wrong

: [0..9] ::. 100 ways that it can go wrong
: [0.9] 100 combinations of inputs to check

1000 combinations of inputs to check

Automation of testing is necessary

Embedded Systems

Innovation BY TNO

Testing Challenges

Increasing complexity
* more functions, more interactions, more options and parameters

Increasing size
* Dbuilding new systems from scratch is not possible anymore
* integration of legacy-, outsourced-, off-the shelf components
« abstract from details: models

Blurring boundaries between systems
 more, and more complex interactions between systems
« systems dynamically depend on other systems, systems of systems

Blurring boundaries in time

* requirements analysis, specification, implementation, testing,
installation, maintenance overlap

* more different versions and configurations

Embedded Systems

Innovation BY TNO

Model-Based Testing: Why

« Mastering increase in complexity, and quest for higher quality

— testing cannot keep pace with development

Software bugs / errors cost US economy yearly:
$ 59.500.000.000 ()

$ 22 hillion could be eliminated...

» Dealing with models and abstraction
— model-based development: UML, MDA, Simulink/Matlab

* Promises better, faster, cheaper testing
— algorithmic generation of tests and test oracles: tools

— maintenance of tests through model modification

Embedded Systems
Innovation

Model-Based Testing (MBT)

pass falil

Embedded Systems
Innovation BY TNO

MBT : Black-Box Testing of Functionality

phases

accessibility

functionality

aspects

Embedded Systems

Innovation BY TNO

Evolution of Testing

(5 ¥)Model-Based Testing

Keyword-Driven

Scripted

‘ Record & Playback
Manual Testing

Embedded Systems

Innovation BY TNO

Testing 1 : Manual Testing

1. Manual testing %?'
l System Under Test
pass falil

Embedded Systems
Innovation BY TNO

Testing 2 : Scripted Testing

—E3

1. Manual testing

o

2. Scripted testing

pass fail

Embedded Systems
Innovation BY TNO

Testing 3 : Keyword-Driven Testing

1. Manual testing
2. Scripted testing
3. Keyword testing

pass fail

Embedded Systems
Innovation BY TNO

Testing 4 : Model-Based Testing

1. Manual testing
2. Scripted testing

3. Programmed
testing

4. Model-based
testing pass fall

Embedded Systems

Innovation BY TNO

Model-Based

Verification, Validation, Testing,

Embedded Systems

Innovation BY TNO

Validation, Verification, and Testing

iInformal

requirements

informal world
validation

verification

(model-based) testing

real world

Embedded Systems
Innovation BY TNO

Verification and Testing

Model-based verification : Model-based testing :

« formal manipulation e experimentation

e prove properties * show error

o performed on model e concrete system

formal concrete
world N ﬁ world

[

Verification is only as good as Testing can only show the

the validity of the model on presence of errors, not their

which it is based absence

Embedded Systems

Innovation BY TNO

Models

Embedded Systems
Innovation BY TNO

Models

Icoffee

?coin ?button

?button

Models: Labelled Transition Systems

Labelled Transition System: S, L, Ly, T, so

/ mitial State
states

transmons

input actions | o
output actions 7 = Input

I = output

Icoffee

?coin @ X) ?button

?button

A Theory of Model-Based Testing

with Labelled Transition Systems

Model-Based Testing

pass falil

MBT : Validity

SUT
conforms to
model

-

SUT passes tests

SUT
conforms to
model

pass falil

Models: Generation of Test Cases

specification test
model case

. Icoffee model

I coin

?coin lalarm

I button

?button

Models: Generation of Test Cases

specification
model

\d Icoffee

?coin lalarm

?button

MBT . Abstract from Scheduling Details

* Four components in parallel, in any order

task(start?, ready!) taskA := task (startA?, readyAl)

taskB = task (startB?, readyB!)

ready! taskC := task (startC?, readyC!)

start?
taskD := task (startD?, readyD!)

model := taskA ||| taskB ||| taskC ||| taskD

MBT . Abstract from Scheduling Details

MBT . Abstract from Scheduling Details

MBT . Nondeterminism, Underspecification

specification ?2Xx(x<0)
model
\ SUT models
? X (x>=0)
|
% .
(lyxy—x/<)

* non-determinism

» under-specification

 specification of properties >
rather than construction

MBT with LTS and 1oco

SUT ioco model

A input/output
= conformance
ﬁ ioco

set of
sound exhaustive LTS tests

SUT passes tests SUT

- behaving as

Input-enabled LTS

pass falil

MBT . Argue about Validity of Tests

S

specification
model

iio/os

&

| fails t

generated
test case

pass pass fall fail

Implementation

Model-Based Testing

with Labelled Transition Systems

There is Nothing More Practical

than a Good Theory

Overview

e MBT: Tools

« MBT: Under-specification

e MBT: Test selection
 MBT: Towards test selection for ioco
 Refinement for ioco

» Test-based modelling = Automata learning

Model-Based Testing

Tools

MBT : Off-Line - On-Line

pass falil

MBT : Off-Line = Batch

pass falil

MBT : On-Line = On-the-Fly

pass falil

Model-Based Testing :

Variations for Underspecification

Variations on a Theme

«liiocos U "sl Straces(s): out (iafters) [out (s afters)
* iEfiorS U "sT (LE{d})*: out(iafters) I out(s afters)
« jioconfs U "s1 traces(s) : out(iafters) | out(s afters)
e iiocors U "s1 F: out (i afters) I out (s afters)
« | iuiocos U "s1 Utraces(s): out (iafters) [out (s afters)
e imiocos multi-channel ioco

o | 1 wioco s non-input-enabled ioco

e iecoe environmental conformance

e |sSiocos symbolic ioco

 i(ntiocos (real) timed tioco (Aalborg, Twente, Grenoble, Bordeaux,.....
e iriocos refinement ioco

 ihiocos hybrid ioco

e jqiocos quantified ioco

e |pocos partially observable game ioco

e |stiocop S real time and symbolic data

Underspecification: ioco and uioco

i ioco s =4 ™ sIl Straces (s): out (i after s)ii out (s after s)

Implementation i i io/o S Specification s

| Uloco S

Underspecification: uioco

" si1 Straces (s): out (i after s)ii out (s after s)

| I0CO S =y

i uioco s =, "™ sll Utraces (s): out (i after s)il out (s after s)

Utraces (s) =
{ Si1 Straces (s) |
"s,?bs,=S:

s after s.R?1? >&p3P

A

2a?a | Straces (s) i

l0CO uioco

2a?a | Utraces (s)

Test Selection

INn Model-Based Testing

Test Selection

* Exhaustiveness never achieved in practice

 Test selection = select subset of exhaustive test suite,
to achieve confidence in quality of tested product

— select best test cases capable of detecting failures

— measure to what extent testing was exhaustive : coverage

e Optimization problem

best possible testing « within cost/time constraints

Test Selection: Approaches

1. random
2. domain / application specific: test purposes, test goals, ...

3. model / code based: coverage

— usually structure based

test: al x?
O

? 28>f
100% 50%
O transition coverage

Towards Test Selection

In the 10co Framework

Test Selection for uioco

i uioco s =4 "™ sll Utraces (s): out (i after s)il out (s after s)

Selection of Sub-Set of UTraces

N\

e Select: M | Utraces (s)

e Test for: i uioco \y s

AN

U ™ siT M: out (i after s)ii out (s after s)

e Coverage: #M
Utraces (S)

Test Selection for uioco

out (s after ?but ?but) = out (s after ?but ?but)

i.e. if already tested for ?but @Gbut
what does testing for ?but @@E@0Out add ?

“but)Q out (s after ?but) = {lcof, ltea, }

l.e. everything is allowed -

|
‘cof ?but what shall be tested then ?

ltea

The set Utraces is not minimal,
l.e., elements are dependent

?but

Test Selection for uioco

i uioco s =4 "™ sll Utraces (s): out (i after s)il out (s after s)

Take weaker specification s’
= Inverse of refinement

? E>p QA0
0 sut(s) | sut() SUTs

O {i|iuioco s} I {i]iuioco s’}

Test Selection for uioco

i uioco s =4 "™ sll Utraces (s): out (i after s)il out (s after s)

2 £>P AOSI>IsT (s) | suT (s)

O {i|iuioco s} I {i]iuioco s’}

Coverage: # SUT (S)
SUT (S))

SUTs

Test Selection: Lattice of Specifications

& ST
o B /// \\\ ST
S; Is stronger than s, U e \ ° top element
sifs; U yd \ ° allows any impl.
C . e C . /! \\\ ®
{i|iuiocos, i {i|iuiocos,} \ chaos ¢
// S) S3
Y yd E ‘\\\ | \\\ \\\
if specs are input-enabled e Vo \ \,
- i 4 e Sl \
then ioco is preorder e \ \
then £ ® uioco / .

Test Selection for uioco

i uioco s =4 "™ sll Utraces (s): out (i after s)il out (s after s)

2 £>P AOSI>IsT (s) | suT (s)

O {i|iuioco s} I {i]iuioco s’}

Requires refinement preorder
£ on specifications.

loco / uioco are not refinement
preorders and are only defined for
Input-enabled implementations

Set of Required Traces

Rtraces (s) =4 { SIT Utraces (s) |

IS not a substring of S,

S S does not end with >B>0

bt)O out (safters) LyE{ } }

lcof Sbut
ltea 2 2 .
but but | Rtraces (s)
?but .
@0 | Utraces (s)

?but

Set of Required Traces

Rtraces throw away superfluous traces, and only those

1. For input enabled implementations:

i uioco s =, ™ sll Utraces (s): out (i after s)ii out (s after s)

A

U ™ si1 Rtraces (s): out (i after s)ii out (s after s)

N

2. Rtraces is “minimal”: For A | Rtraces (s) and A Rtraces (s),

there exists an input-enabled i such that

" siT A: out (i after s)il out (s after s)

and i ui//c;o S

From Required Traces to wioco

Refinement preorder £ is given by wioco ,
considering superfluous traces and non-input enabledness

s wioco s° =4; ™ sll Rtraces (s’) :
1. out (s after s) il out (s after s)
2. ™ s,£s: in (s afters;) E Rin (s afters,)
in (s after s;) =4 { adl L, | safters; must a? }

Rin (s’ after s;) =4

{ a?Al in (s afters,) | $s,i1 Rtraces (s'): s,a? £s, }

A Weaker Specification through wioco

A

s wioco s U >p2 >5405i(s')

?but

S’ Is a weaker than s:
- remove inputs
- add outputs

Icof

?but)O

?but

Required Traces Automaton

A

U

Si1 Rtraces (s)
S accepted by RTA(Ss)

RTA(S)

Icof
ltea

?but

Icof Itea @

?but

>@

MBT : Some Tools - ioco

>
[T
—
@

e AlIFTeC MaTelLo

e Autgli
e Axini Test Mana@'

e Conformiq Qtronic °

 Cooper
e G" st .

 Gotch

NModel
ParTeG
Phact/The Kit
QuickCheck
Reactis
RT-Tester
SaMsTaG
SeppMed MBTsuite °
ing Certifylt

MBT : Some Tools - commercial

« AETG e NModel « STG

. Agatha e ParTeG o TestGen (Stirling)
o Agedis Phact/The Kit

@MaTeLo

Au

¢ Axini Test Manager

» Conformiq Qtronic

« Coop
e G" st
« Gotcha
o JTorX

e Tveda

Learning

Test-Based Modelling

Models

Everybody wants models

Doing nice things with models

— model checking,
simulation,

How to get these models?

— In particular for:
legacy, third-party, out-sourced,
off-the-shelf, components

Does the model correspond with
the real system?

Testing : Model-Based Testing

pass fall

Test-Based Modeling

pass fall

Test-Based Modeling

Automatically learning a model of the behavior
of a system from observations made with testing

 test-based modeling

* black-box
reverse engineering

» observation-based
modeling

* behavior capture
and test

e grammatical inference

Learning Models of Automata

Active learning Is an active research area:
D. Angluin (1987) : L*-algorithm
LearnLib : Tool for FSM learning

Learning Finite Automata with L* :

Teacher

Membership Queries

<€

Yes / No

Equivalence Queries

Learner

Yes / No + Counterexample >[

Learning Models of Reactive Systems

* Tool for active learning of Finite State Machines : LearnLib
* Developed by group B. Steffen (U. Dortmund)
e Able to learn models with up to 10.000 states

e Learner:
formulate
a hypothesis FSM

« Equivalence query
replaced by
model-based testing
of hypothesized model

Application: Banking Cards:
Learning the EMV protocol

Fides Aarts, Erik Poll, and Joeri de Ruiter

e EMV =
Europay, Mastercard and Visa

* Models from black-box implementations
« Learn behaviour blindly
e Security: absence of unwanted functionality

» Correctness/conformance:
presence of required functionality

Model of Maestro app on Dutch banking card

Model of Maestro app on German banking card

Dutch vs. German banking card:
different handling of errors

Learned Model of OCE Printer Module

Model-Based Testing & Test-Based Modeling

27 27
model world physical world

Test Coverage = Learninchrecision

chaos C S : precise, expensive

C : not precise, cheap

Model-Based Testing

There is Nothing More Practical

than a Good Theory

