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Abstract

In 1981 Structural Operational Semantics (SOS) was introduced as a systematic way
to define operational semantics of programming languages by a set of rules of a cer-
tain shape [113]. Subsequently, the format of SOS rules became the object of study.
Using so-called Transition System Specifications (TSS’s) several authors syntacti-
cally restricted the format of rules and showed several useful properties about the
semantics induced by any TSS adhering to the format. This has resulted in a line of
research proposing several syntactical rule formats and associated meta-theorems.
Properties that are guaranteed by such rule formats range from well-definedness
of the operational semantics and compositionality of behavioral equivalences to
security-, time- and probability-related issues. In this paper, we provide an overview
of SOS rule formats and meta-theorems formulated around them.
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1 Introduction

Structural Operational Semantics [114,115,68] has become the common way
to define operational semantics. Operational semantics defines the possible
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transitions that a piece of syntax can make during its “execution”. Each tran-
sition may be labelled by a message to be communicated to the outside world.
Transitions of a composed piece of syntax can usually be defined in a generic
way, in terms of the transitions of its constituent parts. This forms the central
idea behind Structural Operational Semantics (SOS) (see [2,128] for formal
links between SOS and the denotational approach to semantics).

Soon after its introduction, and due to its popularity, SOS itself became a
subject of study, thus resulting in “SOS meta-theory” and “SOS rule formats”.
The first SOS meta-result dates back to the Ph.D. Thesis of Robert de Simone
[41] (in French), an excerpt of which appeared in 1985 [42]. Thus, the SOS
2005 workshop marks the 20th anniversary of SOS meta-theory.

Transition System Specifications (TSS’s), as introduced by Groote and Vaan-
drager in [65], are a formalization of SOS. By imposing syntactic restrictions
on TSS’s one can deduce several interesting properties about their induced
operational semantics. These properties range from well-definedness of the
operational semantics [64,25,60] to security- [126,127] and probability-related
issues [18,78]. The syntactic restrictions imposed by these meta-theorems usu-
ally suggest particular forms of deduction rules to be safe for a particular
purpose and hence these meta-theorems usually define what is called a rule
format.

In [5], an excellent overview is provided for existing rule formats up to the
date of publication (2001). Since then, more formats have been proposed and
we felt that in order to keep track, the field of SOS rule formats requires a
fresh survey. Thus, to some extent, our work is complementary to [5] and by
no means makes it obsolete. The goal of this paper somewhat differs from that
of [5]; the present paper is most suitable for users of rule formats to find the
appropriate results while [5] serves as a perfect introduction for researchers
who would like to start developing new results in this field.

Therefore, we attempt to present an overview of all SOS rule formats defined
in the literature, together with the meta-theorems formulated around them.
The results are also put in a lattice to easily locate the most suitable format for
a certain application. To do this, we define the concept of a TSS, in a far more
general setting than [65], including the concepts of multi-sorted signatures
and variable binding, inspired by the definition of [51]. This general definition
of TSS can serve as a unifying framework and paves the way for studying
semantic meta-theorems for SOS and comparing their underlying frameworks.

The rest of this paper is organized as follows. In Section 2, we define the notion
of Transition System Specification and discuss its semantics. In Section 3 the
hierarchy of formats is given and different syntactic features of SOS rules are
studied. In Sections 5-14, we review rule formats and semantic meta-theorems
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about different SOS frameworks, as follows:

Section 5: (Pre-)Congruence for behavioral equivalences (pre-orders);

Section 6: Operational and equational conservativity of language exten-
sions;

Section 7: Generating equational theories and rewrite systems from the
operational semantics specifications;

Section 8 Frameworks resulting from defining an ordering on rules and
their associated meta-results;

Section 9: Time-related properties;

Section 10: Probability-related properties;

Section 11: Expressiveness of operational semantics frameworks;

Section 12: Compositional reasoning techniques for formalisms with an
operational semantics;

Section 13: Implementations of SOS (or closely related) instances / envi-
ronments;

Section 14: Other (more isolated) meta-results; results that stem from
few papers, including: non-interference (security-related) and
bounded non-determinism meta-theorems.

Acknowledgements. Peter Mosses, Simone Tini, Irek Ulidowski and anony-
mous referees provided useful comments on this article.

2 Transition System Specifications: Syntax and Semantics

2.1 Syntax

A TSS is supposed to define a number of transition relations and predicates
on pieces of syntax. Thus, in order to define a TSS, it is essential to introduce
syntax first. In practice, syntax is usually defined formally using a grammar.

Example 1 The following is an example of a grammar for a simple process
calculus:

Proc := 0 | Act.Proc | Proc+ Proc | Proc ||Proc | µX.Proc | X,

where 0 is a deadlocking process, . denotes action prefixing, + is the nondeter-
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ministic choice operator, || is the parallel composition operator and µX.Proc
denotes a recursive definition. In the above grammar, there are three syntactic
classes: actions (Act), processes (Proc) and recursion variables (X).

Algebraic structures are convenient ways of modeling syntax. In order to de-
fine an algebraic structure for such a language, we have to fix a number of
composition operators which take (possibly zero) parameters of certain sorts
and compose them into a new piece of syntax. We also refer to composition
operators as function symbols and the number and sorts of arguments taken
by them is called their arity. The collection of function symbols with their
arities is called a signature. In order to define the semantics structurally and
generically, one needs to talk about open terms or terms with holes. The role
of holes in terms is played by variables (sometimes called meta-variables or
formal variables).

The following definition defines a general theory for the above concepts. Af-
terwards, we specify the syntax of the signature of the above process calculus
to illustrate the formal definitions.

Definition 2 (Signatures, Terms and Substitutions) A signature Σ con-
sists of the following data:

(1) A collection S of sorts represented by S, S1, S2, . . .;
(2) A collection N of names such that for each sort S there exists an infinite

set NS of names, denoted by nS,mS, . . .. We usually drop the sort indices
of names as they are clear from the context.

(3) A collection of function symbols represented by f, g, . . . together with their

arities which are of the form
−→
S1.S

′
1, . . . ,

−−−→
Sar(f).S

′
ar(f) → S, where

−→
Si is a

(possibly empty) list of sorts of the form Si1 , . . . , Siki
for some natural

number ki, and ar(f) is a natural number denoting the number of param-
eters of function symbol f .

We fix a collection V of variables such that for each sort S there exists an
infinite set VS of variables, denoted by xS, yS, . . .. We usually drop the sort
indices of variables as they are clear from the context. The collection of terms
of sort S, notation TS, is defined inductively by

• a variable xS ∈ VS is a term of sort S;
• a name nS ∈ NS is a term of sort S;

• for a function symbol f in Σ with arity
−→
S1.S

′
1, . . . ,

−−−→
Sar(f).S

′
ar(f) → S and for

all 1 ≤ i ≤ ar(f), if names ~ni are of sorts Si, respectively, and ti are of
sorts S ′i, then f(−→n1.t1, . . . ,

−−−→nar(f).tar(f)) is a term of sort S;
• for t a term of sort S, nS a name of sort S ′, and t′ a term of sort S ′, t[t′/nS]

is a term of sort S. The part [t′/nS] is called the substitution harness.
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Concepts of free and bound names are defined as usual. A term is closed if
no free variables occur in it. The set of all closed terms of sort S is denoted
by CS. Terms are considered important up to α-conversion (i.e., renaming of
bound names) and this is usually dealt with implicitly at the meta-level. The
set of variables appearing in a term t is denoted by vars(t).

A substitution σ is a collection of sort preserving functions σS from variables
of sort S to terms of the same sort. A substitution that only maps variables
to closed terms is called a closed substitution. Application of a (closed) sub-
stitution is lifted to terms, formulas and sets of these as expected.

In case we consider a single-sorted signature Σ with sort S, usually the sort
and signature are identified and the notations VΣ, TΣ, and CΣ are used for VS,
TS, and CS, respectively.

In most of the remainder, unless stated otherwise, explicit substitutions are
omitted from the term structure as they cause several difficulties when ob-
taining semantic meta results (the only exception is in Section 6, starting
from Definition 36, where an operational conservativity result is given in the
presence of explicit substitutions).

Example 3 Considering the process calculus of Example 1, its signature has
only two sorts A and P for actions and processes. The function symbols of
this signature and their arities are as follows:

a, . . . → A (Basic action constants)

. A× P → P (Action prefixing)

+ P × P → P (Nondeterminstic choice)

|| P × P → P (Parallel composition)

µ . P.P → P (Recursion)

Definition 4 (Predicate and Transition Formulae) Fix sets Rel and Pred
of relation and predicate symbols with fixed arities. Suppose relation symbol

r ∈ R is of relation arity S1 × . . . Sn × Sn+1 (n ≥ 1). We write t1
t2,...,tn→ r tn+1,

where, for 1 ≤ i ≤ n + 1, ti is of sort Si, and call it a positive transition

formula. We write t1
t2,...,tn9 r for a negative transition formula. In both cases

t2, · · · , tn is called the label of the transition formula. A transition formula is
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a positive or negative transition formula.

Suppose that predicate symbol p ∈ Pred is of predicate arity S1×. . . Sn (n ≥ 1).
We write (t1 . . . , tn−1) ↓p tn, where ti is of sort Si and call it a positive predicate
formula. We write (t1 . . . , tn−1) 6↓p tn for a negative predicate formula. In
both cases t1, · · · , tn−1 is called the label of the predicate formula. A predicate
formula is a positive or negative transition formula. A (positive or negative)
formula is a (positive or negative) predicate or transition formula.

Definition 5 (Transition System Specification(TSS)) A TSS denoted by
the pair (Σ, D) is a set of deduction rules d ∈ D defined on a signature Σ where
each deduction rule is of the following shape 4 :

H

C

where H is a set of formulae and C is a positive formula.

For TSS’s with constant labels, a distinguished sort L is dedicated to represent
the labels. In the literature, as well as in the remainder of this paper, for TSS’s
with closed terms as labels, sort L is taken out of the signature Σ and such
TSS’s are then represented by a triple (Σ, L,D). In the rest of this paper, we
use l, l′, li, . . . to denote labels (in general).

Unless explicitly stated otherwise, in the rest of this paper, it is assumed that
there is only one relation symbol and only one predicate symbol. These are
conveniently denoted by → and ↓, respectively.

2.2 Semantics

For positive TSS’s, i.e., TSS’s without negative premises, the semantics of a
TSS is clear; the transition relation (and the predicate) induced by a TSS is
precisely the set of closed transitions (and predicate) formulae provable using
the deduction rules. However, if there are negative premises in the semantical
rules it is not self-evident anymore whether the rules define a transition rela-
tion in an unambiguous way. For example, consider the following two TSS’s:

c
a9

c
a→ c

c
a9

c
b→ c

c
b9

c
a→ c

The left-hand-side TSS is rather paradoxical and the right-hand-side one is
ambiguous in that it is not clear why one would prefer one of the two possible

4 Note that the relation and predicate symbols are defined implicitly by their oc-
currence in the deduction rules.
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transitions c
a→ c or c

b→ c over the other ([60] gives an overview of this issue,
presents 11 different semantic interpretations of TSS’s, and compares them
formally).

In [64], the first criterion is given using which a TSS in the ntyft/ntyxt format
(see Section 5) is guaranteed to have a well-defined semantics. This criterion,
defined below for TSS’s in general, is called (strict) stratification and is origi-
nally due to [55] in logic programming. It is an important property of a format
when it guarantees that every set of rules unequivocally defines a transition
relation. Below we give a more general definition of stratification for arbitrary
TSS’s.

Definition 6 (Stratification) A stratification of a TSS with signature Σ is
a function S from closed positive formulae to an ordinal such that for all

deduction rules
H

C
in the TSS, for all closed substitutions σ, and for all h ∈ H

• S(σ(h)) ≤ S(σ(C)) if h is a positive formula;

• S(σ(t
l→ t′)) < S(σ(C)) for all t′ ∈ CΣ, if h is a negative transition formula

t
l9 ;

• S(σ((l) ↓ t)) < S(σ(C)) if h is a negative predicate formula (l) 6↓ t.

A TSS is called stratified when there exists a stratification function for it. If
the measure decreases also from the conclusion to the positive premises, then
the stratification is called strict.

Later, in [25], the notions of semantics and well-definedness for TSS’s were
generalized to the notions of three-valued stable models and complete TSS’s.
In order to define these notions, we need a few auxiliary notions for provability
and truth.

Definition 7 (Provability and Truth) A deduction rule
Φ

φ
is provable from

a TSS tss, denoted by tss `
Φ

φ
, when there exists a well-founded 5 upwardly

branching tree with formulae as nodes and of which

• the root is labelled by φ;
• if a node is labelled by ψ and the nodes above it form the set K then one of

the following two cases hold:
· ψ ∈ Φ and K = ∅;
· ψ is a positive transition formula and

K

ψ
is an instance of a deduction

5 A tree is well-founded if and only if each node of the tree having a finite distance
to the root node.
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rule in tss (a deduction rule r with a substitution σ applied to it).

A negative transition formula φ = p
l9 is true for a set PF of positive for-

mulae, denoted by PF � φ when there exists no p′ such that p
l→ p′ ∈ PF . A

negative predicate formula φ = (l) 6↓ p is true for a set PF of positive for-

mulae, denoted by PF � φ when (l) ↓ p /∈ PF . Formulae p
l→ p′ and (l) ↓ p

respectively deny p
l9 and (l) 6↓ p and vice versa. A set NF of negative for-

mulae is true for the set PF , denoted by PF � NF when for all φ ∈ NF ,
PF � φ.

As said before, for a positive TSS’s, the notion of provability defines the seman-
tics of TSS’s in a straightforward manner by requiring that a closed positive
formula is in the semantic model of TSS if and only if it is provable from the
TSS from an empty set of premises. However, for TSS’s with negative premises
the issue is more complicated and for such TSS’s the following notion from
[116,25] defines a general semantics.

Definition 8 (Three-Valued Stable Models) A pair (C,U) of disjoint sets
of positive closed formulae is called a three-valued stable model for TSS tss
(where C stands for Certain and U for Unknown; the third value is determined
by the formulae not in C ∪ U) when

• for all φ ∈ C, tss `
N

φ
for a set N of negative closed transition formulae

such that C ∪ U � N ;

• for all φ ∈ C∪U , tss `
N

φ
for a set N of negative closed transition formulae

such that C � N .

In [116,60], it has been shown that every TSS admits a least three-valued
stable model with respect to the information theoretic ordering (i.e., (C,U) ≤
(C ′, U ′) when C ⊆ C ′ and U ′ ⊆ U). A TSS is called complete [60] (or positive
after reduction [25]) if for its least three-valued stable model (C,U), U = ∅. A
stratified TSS is indeed complete but not all complete TSS’s can be stratified
[25].

The proof theoretic counterpart for the notion of three-valued stable model is
the following notion of well-supported proof.

Definition 9 (Well-Supported Proof) A well-supported proof in a TSS
tss for a formula φ is a well-founded upwardly branching tree with formu-
lae as nodes and of which

• the root is labeled by φ;
• if a node is labeled by a positive formula ψ and the nodes above it form the
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set K then
K

ψ
is an instance of a deduction rule in tss (a deduction rule r

with a substitution σ applied to it);
• if a node is labeled by a negative formula ψ and the nodes above it form

the set K then for all provable deduction rules
N

γ
such that N is a set of

negative formulae and γ denies ψ, a formula in N denies one in K.

Note that the notion of well-supported proof is consistent in that no two
formulae denying each other can be given a well-supported proof. A TSS is
complete (in the model theoretic sense) if and only if for all formulae φ, either
φ itself or a formula denying it can be given a well-supported proof.

2.3 Complementary Frameworks

Sometimes deduction rules are furnished with complementary constructs such
as an ordering relation on deduction rules or an equational specification. In
this section we review such complementary frameworks.

Ordering the Deduction Rules. One way to avoid the use of negative
premises (and sometimes predicates) is by defining an order among deduction
rules. Then, a deduction rule of a lower order may be applied to prove a
formula only when there is no deduction rule with a higher order applicable.
For example, the semantics of the priority operator [7] can be expressed in
terms of a number of rules of the following form

(ra)
x

a→x′

θ(x)
a→ θ(x′)

with an ordering << defined by ra << rb whenever a < b. The semantics of
the sequential composition operator can also be defined by the following rules

(rx)
x

l→x′

x; y
l→x′; y

(ry)
y

l→ y′

x; y
l→ y′

with the ordering << defined by ry << rx. This way, the second argument of
sequential composition can take over, only when the first argument cannot
make a transition, i.e., has terminated (we do not consider unsuccessful ter-
mination or deadlock in this simple setting). The implications of introducing
an order among deduction rules and its possible practical use are investigated
in [133–135,111].

Equational Specifications. Structural congruences are equational addenda
to SOS specification which can define inherent properties of function symbols
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or define some function symbols in terms of the others. For example, the fol-
lowing equation specifies that the order of arguments in a parallel composition
does not matter or in other words, that parallel composition is commutative.

x || y ≡ y ||x

In [100], the addition of equational specifications to SOS specifications is stud-
ied in detail.

3 A hierarchy of rule formats

Since the introduction of the first rule format in [42], some 20 other ones
have been added. In order to keep track of them we made an overview of
the existing rule formats in Figure 1. The lattice presented there has SOS
frameworks as nodes, ordered by syntactic inclusion of rule formats (mainly
based on the syntactic features). The most general format can be found at
the top and more specific formats at lower positions. The arrows indicate
syntactical inclusion of rule formats 6 . The one inclusion that is not syntactic
but possibly requires some translation of syntactic constructs is indicated by
a dotted line.

A node

Format Name

Syntactic Features

Semantic Meta-Theorems [references]

in this lattice represents a format with additional information on the type of
syntactic features that are included and the semantic meta-theorems that are
given for this format in the literature (with references). Consider the following
example taken from the lattice:

NTyft (NTree)

SS, CT, LA, NWF,

CPY, NEG, INF.

C(↔s) [64,48]

It describes the NTyft (Ntree) format which is defined for single sorted TSS’s
(SS) with closed terms as labels (CT) and allows for lookahead (LA), non-well-

6 As a consequence we tend to neglect finiteness assumptions about the number of
rules, the number of function symbols in signatures and the like.

10



Generalized PANTH
MS,CT,B,LA,CPY,
NEG,INF,PRED

C(↔S) [86] OC [87]

Extended Tyft
MS,OT,LA,CPY,INF
C(↔≡), CMP [54]

Bounded Nondet.
SS,CT,LA,CPY,
NEG.INF,PRED

BND [52] PANTH
SS,CT,LA,NWF,
NEG,INF,PRED
C(↔S) [143,48]

FokkinkVerhoef
MS,LT,B,LA,
CPY,NEG,INF,PRED
OC [51]

Promoted PANTH
SS, LT,LA,CPY,
NEG,INF,PRED
C(↔S,↔HO) [98]

Promoted Tyft
SS, OT

LA,CPY,NEG,INF,PRED
C(↔S) [20]

GSOS
SS,CT,CPY,NEG

C(↔S) [24]
AX [3],

RM [123]

Tyft (Tree)
SS,

CT,LA,NWF,CPY,INF
C(↔S) [65,46]
PC(≤nn) [25],

RM [49]

PATH
SS,CT,LA,CPY,INF,PRED

C(↔S) [14]

Probabilistic
GSOS

SS,CT,CPY,NEG
C(↔p) [18]

Ordered SOS
SS,CT,CPY
C(↔S) (135)
Rewrite [133]PB Format

SS,CT,CPY
C(↔p), ST [78]

De Simone
SS,CT

C(↔S) [42]
PC(≤tr,f ) [138]

x-Cool Languages
SS,CT

C(↔R+(η,WB,BB,D)) [22;61]
AX [22,61] SBBNI

SS,CT
NIF [127]

Ready Simulation
SS,CT,CPY,INF,NEG

RM [50]

NTyft (NTree)
SS, CT,LA,NWF,
CPY,NEG,INF
C(↔S) [64,48]

Ziegler et. al.
MS,CT,B,N,
LA,CPY,INF
C(↔o) [147]

Fig. 1. A hierarchy of existing SOS formats

founded rules (NWF), copying (CPY), negative premises (NEG), and infinite
premises (INF). For this format, C(↔s) [48,64] indicates that a congruence
meta-theorem for strong bisimilarity is presented in [48,64].

Table 1 lists abbreviations used for indicating the syntactic features of the
rule formats that appear in the hierarchy of rule formats from Figure 1. In
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Syntactic Features Abbreviations

Many-Sortedness of the Signature

Single-Sorted SS

N -Sorted NS

Many-Sorted MS

Labels

Closed Terms CT

Open Terms OT

Lists of Open Terms LT

Binders and Names

Binders B

Names N

Lookahead LA

Non-well-founded Rules NWF

Copying Variables CPY

Negative Premises NEG

Infinite Premises INF

Predicates PRED
Table 1
Syntactic features of rule formats (cf. Fig. 1)

Section 4, these syntactic features are introduced and illustrated. Table 2 lists
abbreviations used for indicating the semantic meta-results in the hierarchy.
These are further explained from Section 5 onwards.

4 Syntactic Features of Rule Formats

The syntactic features that are encountered in the hierarchy are described in
the rest of this section. The abbreviations can be found in Table 1.

Many-Sortedness of the Signature Based on the number of sorts allowed
in the signature, an SOS framework may be classified in the following three
categories:

SS Single-sorted TSS’s: This is the most common framework in the literature.
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Semantic Meta-Theorems

Semantic Meta-Theorems Abbreviations

Congruence for x-Bisimulation C(↔x)

Congruence for x-equality C(≈x)

Pre-congruence for x-pre-order PC(≤x)

Operational Conservativity OC

Deriving Sound and Complete Axiomatization AX

Comparison of Induced Equality Classes CMP

Reasoning Methods RM

Non Interference (Security-related [119]) NIF

Bounded Non-determinism BND

Stochasticity ST
Table 2
Short-hands for theorems used in Figure 1

It has a single sort for operational states which is usually called the sort of
processes (and terms from this sort are process terms). In this framework,
there is usually a sort for constant labels, as well.

NS N -Sorted TSS’s: A framework may only allow for a fixed number of sorts
participating in the signature. An example of such frameworks is the process-
tyft format of [104] where there are two distinguished sorts of processes and
data. Apart from these two sorts that are used to define the states of the
semantics, there is a sort for constant labels.

MS Multi-Sorted TSS’s: In such frameworks, there is no restriction on the
sorts allowed for constructing terms.

The TSS of [54] has a special status with respect to its allowed signatures.
Namely, it requires a special sort for processes and at least one (necessarily
different) sort for labels. Furthermore, it requires that process sorts should not
participate in function symbols with label sorts as targets.

Labels Labels are terms that may appear as parameters of transition rela-
tions and predicates in the deduction rules. SOS frameworks can be classified
with respect to the kind of labels they afford as follows.

CT Closed terms as labels: Many SOS frameworks assume a special sort for
labels and only allow for closed terms (alternatively, constants) of this sort to
appear as labels. Such SOS frameworks thus forbid any correlation between
valuation of terms in the source and the targets of transitions, on one hand,
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and the labels, on the other hand, through the use of common variables.
Most SOS framewroks reviewed in this paper only allow for constants as
labels.

OT Open terms as labels: Frameworks defined in [51,54,20,98] allow for arbi-
trary open terms as labels.

Open terms are used as labels in a number of cases in transition sys-
tem specifications. Higher-order process calculi [27,125,121] are examples of
formalisms exploiting this feature.

Two other frameworks that use labels with some structure on them are the
Modular SOS framework of [96,97] and the Enhanced Operational Semantics
of [44]. The former assumes that labels are arrows of a category and thus
comes equipped with composition and identity. The latter approach codes
the derivation tree of transitions on their labels.

LT Lists of Terms as Labels: Most SOS frameworks only allow for a single
term as label. The only existing exceptions are those of [51,98].

Names and Binders In many contemporary process algebras and calculi,
concepts of names, (actual and formal) variables and name abstraction (bind-
ing) are present and even serve as a basic ingredient. For example, in the
π-calculus [91–93], names are first-class citizens and the whole calculus is
built around the notion of passing names among concurrent agents. Less cen-
tral, yet important, instances of these concepts appear in different process
algebras in the form of the recursion operator, the infinite sum operator and
the time-integration operator (cf., for example, [91], [82,117] and [13], respec-
tively). Hence, it is interesting to accommodate the concept of names in the
TSS framework.

B The first step towards specifying the above-mentioned constructs is to allow
for binding signatures. There have been a few attempts in this direction.
Proposals for SOS frameworks with binding signatures are formulated in
[147,51,86,87,72,120,146].

N Another related issue in this regard, is the concept of fresh names and fresh-
ness contexts. In the semantics and notions of behaviorial equivalence for
some formalisms (such as the π-calculus), one encounters “side-conditions”
about freshness of names (or statements such as “name n does not appear
free in term t”). In order to capture these notions, some capacities must be
foreseen. The nominal techniques of Gabbay and Pitts [53] and the FOλ∆∇

formalism of Miller and Tiu [88] provide good possibilities for incorporating
these notions in the SOS meta-theory and the first attempt in this direc-
tion has been made by [147]. [45] adopts an alternative model of names and
freshness contexts to extend the de Simone format with such concepts.

Apart from the above mentioned formats, all other rule formats we mention
in the remainder of this paper do not support names and binders.
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Lookahead A framework allows for lookahead if a deduction rule in the
framework may have two premises with a variable in the target of one of the
premises being present in the source of the other. An example of a deduction
rule with lookahead is the following.

x
τ→ y y

l→ z

x
l→ z

The above rule from [56] is used to combine silent (τ) and ordinary transitions
in order to implement a weak semantics (by ignoring silent steps) inside a
strong semantic framework.

Non-well-founded Rules The variable dependency graph of a deduction
rule is a graph of which the nodes are variables and there is an edge between
two variables if one appears in the source or label and the other in the target
of (the same) positive premise in the deduction rule. A deduction rule is well-
founded when all the backward chains of variables in the variable dependency
graph are finite. A TSS is well-founded when all its deduction rules are.

All practical instances of SOS specifications are well-founded. Well-foundedness
also comes very handy in the proof of semantic meta-results for SOS frame-
works. It is of theoretical interest whether a framework allows for non-well-
founded deduction rules or not.

Copying A framework has the copying feature if it allows for repetition of
variables in different premises and in the target of the conclusion and shar-
ing a variable between the source of a premise and target of the conclusion
(called branching premises, explicit copying and implicit copying, respectively
in [130]). A simple example of explicit copying is the second rule in the fol-
lowing TSS which defines the semantics of the while construct.

¬Hold [b,M ]

〈while (b) do P od,M〉 ↓

Hold [b,M ]

〈while (b) do P od,M〉→ 〈P ; while (b) do P od,M〉

Negative Premises Negative premises are a complicating factor in SOS
frameworks. They cause several complications with respect to the semantics of
TSS’s which are rather difficult to solve. In other words, it is not immediately
clear what can be considered a “proof” for a negative formula.
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To our knowledge, in practice, the first example of negative premises in SOS
appeared in [11,7] in the specification of the semantics of the following priority
operator θ( ).

x
a→x′ ∀b>a x

b9

θ(x)
a→ θ(x′)

The above deduction rule states that a parameter of θ( ) can perform a tran-
sition with label a if no transition with a label b of higher priority can be
performed (according to a given partial ordering >).

Infinite Premises It is an interesting theoretical question whether a frame-
work allows for infinite number of premises or not. Also practically, when deal-
ing with infinite domains (e.g., infinite basic actions, data or time domains), it
is sometimes useful to have deduction rules with infinite premises. The above
deduction rule for the priority operator may have infinite premises if there is
a chain of priorities with infinitely many (different) basic actions.

The following example from [107] illustrates another possible use of deduction
rules with infinite premises:

x
a→ y

∂H(x)
a→ ∂H(x′)

[a /∈ H]
∀a∈A\H x

a9

∂H(x)
χ→ δ

The above deduction rules define the semantics of the encapsulation operator
∂H( ) which forbids its parameter from performing transitions in H. If the
parameter cannot perform any ordinary action allowed by ∂H then it makes a
transition to the deadlocking process δ. If the set of basic actions is infinite,
then for some finite H, the deduction rule in the right-hand side has infinite
(negative) premises.

Predicates Predicates are useful syntactic features which are used to spec-
ify phenomena such as termination or divergence. The following deduction
rules define the concept of termination ↓ for a simple signature containing
a constant 1 representing the empty process and a binary non-deterministic
choice + [12]:

↓ 1

↓ x

↓ x+ y

↓ y

↓ x+ y
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5 (Pre-)Congruence for Behavioral Equivalences

5.1 Preliminary Definitions

Given an operational semantics, it is interesting to observe when two systems
show the same behavior. It is also interesting to check whether a particular
system is a restricted implementation of the other. To check these, we have to
have notions of behavioral equivalence and behavioral pre-order, respectively.
It is very much desired for a notion of behavioral equivalence (pre-order) to
be compositional or in technical terms to be a congruence (pre-congruence).
There is a myriad of notions of behavioral equivalence and pre-order in the
concurrency literature [57,59]. Correspondingly, there are a number of rule for-
mats guaranteeing these notions to be (pre-)congruences [65,23,22,61]. In the
remainder, we confine ourselves to single-sorted frameworks. In such frame-
works, the arity of a function symbol can be conveniently expressed by a nat-
ural number (representing the number of parameters on the left-hand side of
the arrow). The only congruence meta-theorems for multi-sorted frameworks
are those of [54,86,51,147]. The only congruence results accommodating open
terms as labels are [54,51,98].

We start with defining the notion of congruence for relations on closed terms.

Definition 10 ((Pre-)Congruence) An equivalence (pre-order) R ⊆ CΣ ×
CΣ is a (pre-)congruence with respect to a signature Σ if and only if for all
function symbols f from Σ and all −→p ,−→q ∈ CΣ, if −→p R −→q then f(−→p ) R f(−→q ).

5.2 Congruence of strong bisimilarity

The first congruence formats were defined for the notion of strong bisimilarity,
defined below.

Definition 11 (Bisimulation and Bisimilarity [110]) Given a transition
relation → ⊆ CΣ × L × CΣ and a predicate ↓⊆ CΣ, a symmetric relation
R ⊆ CΣ × CΣ is a bisimulation relation if and only if, for all p, q ∈ CΣ such
that (p, q) ∈ R, it satisfies

• for all p′ ∈ CΣ and l ∈ L, if p
l→ p′, then q

l→ q′ for some q′ ∈ CΣ such that

(p′, q′) ∈ R; then p
l→ p′ for some p′ ∈ CΣ such that (p′, q′) ∈ R;

• for all l ∈ L, (l) ↓ p if and only if (l) ↓ q.

Two closed terms p and q are bisimilar, p ↔ q, if and only if there exists
a bisimulation relation R such that (p, q) ∈ R. Two closed terms p and q
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are bisimilar with respect to a transition system specification tss, denoted by
tss ` p ↔ q, if and only if they are bisimilar with respect to the semantics of
tss.

There are good reasons for considering strong bisimilarity as an important
notion of behavioral equivalence. Here, we mention a few.

(1) Strong bisimilarity usually gives rise to elegant and neat theories and it
turns out that congruence formats for it are also much more elegant and
compact than those for other (weaker) notions;

(2) For finite state processes, strong bisimilarity can be checked very effi-
ciently in practice [108] while some weaker notions are intractable [75];

(3) Other (weaker) notions of behavioral equality can often be coded in strong
bisimilarity [56].

So, it is not surprising that the first standard congruence format was geared
toward strong bisimilarity. This format, which uses the positive framework
with constant labels, was proposed by de Simone in [42].

Definition 12 (de Simone Format) A deduction rule is in the de Simone
format if and only if it has the following form:

{xi
li→ yi | i ∈ I}

f(−→x )
l→ t

[Cond(
−→
li , l)].

where xi and yi are distinct variables, f is a function symbol from the signa-
ture, I is a subset of the set {1, . . . , ar(f)} (indices of arguments of f), and
t is a process term that only contains variables among yi’s for i ∈ I and xj’s
for j /∈ I and does not have repeated occurrences of variables, li’s and l are
constant labels and Cond is a condition on the labels of the premises and the
label of the conclusion.

A TSS is in the de Simone format if all its deduction rules are.

The side conditions in the above rule format are usually left out since such
rules can be replaced by the set of all rules with concrete labels satisfying the
side condition.

Bloom, Istrail and Meyer, in their study of the relationship between bisimilar-
ity and completed-trace congruence [24], define an extension of the de Simone
format, called GSOS (for Structural Operational Semantics with Guarded
recursion), to capture reasonable language definitions. The GSOS rule for-
mat extends the de Simone rule format by allowing for copying and negative
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premises. 7 The GSOS format is formally defined as follows.

Definition 13 (GSOS Format) A deduction rule is in the GSOS format if
and only if it has the following form:

{xi
lij→ yij | i ∈ I, 1 ≤ j ≤ mi} ∪ {xj

l′jk9 | j ∈ J, 1 ≤ k ≤ nj}

f(−→x )
l→ t

where f is a function symbol, xi (1 ≤ i ≤ ar(f)) and yij’s (i ∈ I and 1 ≤ j ≤
mi) are all distinct variables, I and J are subsets of {1, . . . , ar(f)}, mi and
nj are natural numbers (to set an upper bound on the number of premises),
vars(t) ⊆ {xi | 1 ≤ i ≤ ar(f)} ∪ {yij | i ∈ I, 1 ≤ j ≤ mi} and lij’s, l

′
jk’s and l

are constant labels. A TSS is in the GSOS format when it has a finite signature,
a finite set of labels, a finite set of deduction rules and all its deduction rules
are in the GSOS format.

It should be noted that in the original formulation of the GSOS format from
[24], the TSS is required to have unary operators a. and binary operator +
with their standard deduction rules

a.x1
a→x1

x1
a→x′1

x1 + x2
a→x′1

x2
a→x′2

x1 + x2
a→x′1

.

In later publications such as [5], this requirement has been omitted.

Another orthogonal extension of the de Simone format is called the tyft/tyxt
format 8 and is first formulated in [65]. This format allows for lookahead,
copying and an infinite set of premises.

Definition 14 (Tyft/tyxt Format [65]) A rule is in the tyft format if and
only if it has the following form:

{ti
li→ yi | i ∈ I}

f(−→x )
l→ t

where xi and yi are all distinct variables (i.e., for all i, i′ ∈ I and 1 ≤ j, j′ ≤
ar(f), yi 6= xj and if i 6= i′ then yi 6= yi′ and if j 6= j′ then xj 6= xj′), f is

7 Note that this does not mean that a TSS in the de Simone format is also in the
GSOS format since the GSOS format has additional finiteness assumptions.
8 Tyft/tyxt is a code representing the structure of symbols in the deduction rules,
namely, a general term (t) in the source of the premises, a variable (y) in the target
of the premises, a function symbol (f) or a variable (x) in the source of the conclusion
and a term (t) in the target of the conclusion.
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a function symbol from the signature, I is a (possibly infinite) set of indices,
the ti’s and t are arbitrary terms and the li’s and l are constant labels.

A rule is in tyxt format if it is of the above form but the source of the conclu-
sion is a variable distinct from all variables that appear in the targets of the
premises. A TSS is in the tyft format when all its deduction rules are. A TSS
is in the tyft/tyxt format when all its deduction rules are either in the tyft or
in the tyxt format.

Any TSS in the tyft/tyxt format can be reduced to an equivalent TSS (inducing
the same transition relations) in the tyft format. In [65], to prove congruence
of strong bisimilarity for TSS’s in the tyft/tyxt format, well-foundedness of the
TSS is assumed. Later, in [46], it is shown that the well-foundedness constraint
can be relaxed and that for every non-well-founded TSS in the tyft/tyxt format,
a TSS exists that induces the same transition relation and is indeed well-
founded.

The merits of the two extensions were merged in [64] where negative premises
were added to the tyft/tyxt format, resulting in the ntyft/ntyxt format.

Definition 15 (Ntyft/ntyxt Format [64]) A rule is in the ntyft format if
and only if it has the following form:

{ti
li→ yi | i ∈ I} ∪ {tj

l′j9 | j ∈ J}

f(−→x )
l→ t

The same conditions as of the tyft format hold for the positive premises and
the conclusion. The negative premises have constant labels. There is no par-
ticular constraint on the terms appearing in the negative premises. Set J is
the (possibly infinite) set of indices of negative premises. A rule is in the ntyxt
format if it is of the above form but the source of conclusion is a variable
distinct from all targets of premises. A TSS is in the ntyft format when all its
deduction rules are. A TSS is in the ntyft/ntyxt format when all its deduction
rules are either in the ntyft or in the ntyxt format.

As explained before, introduction of negative premises in the ntyft/ntyxt for-
mat brings about doubts regarding the well-definedness of the semantics. In
[25], it has been shown that for complete TSS’s in the well-founded ntyft/ntyxt
format strong bisimilarity is a congruence. The well-foundedness assumption
was also used in [64] and was shown to be redundant in [48].

Finally, the path format [14] for Predicates And Tyft/tyxt Hybrid format) and
the panth format [144] (for Predicates And Negative Tyft/tyxt Hybrid format)
extend the tyft/tyxt and the ntyft/ntyxt with predicates, respectively.
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Definition 16 (Panth Format [144]) A rule is in the panth format if and
only if it has the following form:

{(li) ↓ ti or ti
li→ yi | i ∈ I} ∪ {(l′j) 6↓ tj or tj

l′j9 | j ∈ J}

(l) ↓ t or f(−→x )
l→ t or x

l→ t

The same conditions as for the ntyft/ntyxt format hold for the premises and
the conclusion. A TSS is in the panth (path) format when all its deduction
rules are (and it contains no negative premises).

Theorem 17 (Congruence of Strong Bisimilarity for Panth [144]) For
a complete TSS in the panth format, strong bisimilarity is a congruence.

The promoted tyft/tyxt format [20] extends the tyft/tyxt format with open
terms as labels. In [98], the authors present a format that simplifies the pro-
moted tyft/tyxt format by eliminating some of the restrictions on the labels of
the transition relation, and adding to it predicates and negative premises and
the use of lists of terms as labels of transition relations. It is therefore also
a generalization of the panth format. The following definitions and theorem
are formulated in the setting with multiple transition relations and predicates
and lists of open terms as labels.

An operator is called volatile w.r.t. a certain relation or predicate if it occurs
as a label of such a relation or predicate in a premise of a deduction rule with
a variable that occurs in the source or in the right-hand side of a positive
premise of that same deduction rule.

Definition 18 (Volatile Operators) An operator f is volatile for relation
r (or predicate p) when there exists a deduction rule of the form

{(li) ↓pi
ti or ti

li→ri
t′i | i ∈ I} ∪ {(lj) 6↓pj

tj or tj
lj9rj

| j ∈ J}

(l) ↓p′ t or t
l→r′ t

′

where f(
−→
t ) is a subterm of a component of lm for some m ∈ I ∪ J such that

r = rm (p = pm) and vars(
−→
t ) ∩ vars(t) 6= ∅ or vars(

−→
t ) ∩ vars(t′i) 6= ∅ for

some i ∈ I.

Definition 19 (Promoted Panth Format [98]) A rule is in the promoted
panth format if and only if it has the following form:

{(li) ↓pi
ti or ti

li→ri
yi | i ∈ I} ∪ {(lj) 6↓pj

tj or tj
lj9rj

| j ∈ J}

(l) ↓p f(−→x ) or f(−→x )
l→r t

where I and J are disjoint and the following criteria are satisfied:
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(1) all the variables xi (1 ≤ i ≤ ar(f)) and yi (i ∈ I) and the variables in l
are pairwise distinct;

(2) if a component of lk (k ∈ I ∪ J) is a variable then it is not among the
xi’s and yi’s;

(3) for all components t of l:
(a) if t contains a volatile g for r (for p) then t is of the form g(−→z ) where

all zi’s are distinct variables and for all k ∈ I ∪ J , all components of
lk containing a variable among −→z are of the form g′(

−→
t ) where g′ is

volatile for rk (for pk);
(b) if there is a volatile operator for r (for p) in the signature and if t is

a variable z then for all k ∈ I ∪ J , all components of lk containing z
are either z itself or are of the form g′(

−→
t ) where g′ is volatile for rk

(for pk).

A TSS is in the promoted panth format when all its deduction rules are.

Theorem 20 (Congruence of Strong Bisimilarity for Promoted Panth)
For a stratified and well-founded TSS in promoted panth format, strong bisim-
ilarity is a congruence.

We expect that in the above theorem the assumption about stratification can
be replaced by the more general completeness assumption. In [103], the authors
show that the well-foundedness assumption cannot be dropped in the above
theorem.

In [86], the panth format is extended for multi-sorted signatures and variable
binding. The resulting format is called generalized panth. This covers the prob-
lem of operators such as recursion or choice over a time domain. The notion of
bisimilarity used differs from the traditional one in the sense that closedness
under α-conversion and closedness w.r.t. substitution for bound variables are
required (see [86, Definition 4.1]). The issue of binding operators for multi-
sorted process terms is also briefly introduced in [5].

5.3 Congruence of weak equivalences

For the congruence of weaker notions of bisimilarity a number of standard
formats have been proposed. A major class of such formats are the Cool lan-
guages formats introduced in [22] which prove congruence of (rooted) weak and
branching bisimilarity. Recently, in [61], these formats have been reformulated
and additional formats have been given to prove congruence of (rooted) delay
and (rooted) η-bisimilarity.

Before we give the formats, we first define the notions of equivalence. Note that
the formats from [22] and [61] are for a TSS without predicates. Therefore,
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we have given the definitions of the weak equivalences for a TSS without
predicates. In the following definitions it is assumed that τ ∈ L. The notations

⇒ and
(l)→ from [5] are used with their usual meanings, i.e., p⇒ p′ indicates

an arbitrary sequence of consecutive τ -transitions: p ≡ p1
τ→ · · · τ→ pn ≡ p′

(n ≥ 1), and p
(l)→ p′ abbreviates p

l→ p′ or l = τ ∧ p = p′.

Definition 21 (Weak Bisimilarity) A symmetric relation R ⊆ CΣ×CΣ is a
weak bisimulation relation if and only if, for all p, q ∈ CΣ such that (p, q) ∈ R,
it satisfies

• for all p′ ∈ CΣ and l ∈ L, if p
l→ p′, then q ⇒ q1

(l)→ q2 ⇒ q′ for some
q1, q2, q

′ ∈ CΣ such that (p′, q′) ∈ R.

Two closed terms p and q are weakly bisimilar, p↔wq if and only if there exists
a weak bisimulation relation R such that (p, q) ∈ R. Two closed terms p and
q are rooted weakly bisimilar, p↔rwq, if the following conditions are satisfied:

• whenever p
l→ p′ there exist q1, q2 and q′ such that q ⇒ q1

l→ q2 ⇒ q′ and
p′↔wq

′;

• whenever q
l→ q′ there exist p1, p2 and p′ such that p ⇒ p1

l→ p2 ⇒ p′ and
p′↔wq

′.

Definition 22 (Branching Bisimilarity) A symmetric relation R ⊆ CΣ ×
CΣ is a branching bisimulation relation if and only if, for all p, q ∈ CΣ such
that (p, q) ∈ R, it satisfies

• for all p′ ∈ CΣ and l ∈ L, if p
l→ p′, then q ⇒ q1

(l)→ q′ for some q1, q
′ ∈ CΣ

such that (p, q1) ∈ R and (p′, q′) ∈ R.

Two closed terms p and q are branching bisimilar if and only if there exists
a branching bisimulation relation R such that (p, q) ∈ R. Two closed terms p
and q are rooted branching bisimilar, p↔rbq, if the following conditions are
satisfied:

• whenever p
l→ p′ there exists q′ such that q

l→ q′ and p′↔bq
′;

• whenever q
l→ q′ there exists p′ such that p

l→ p′ and p′↔bq
′.

Definition 23 (η-Bisimilarity) A symmetric relation R ⊆ CΣ × CΣ is an
η-bisimulation relation if and only if, for all p, q ∈ CΣ such that (p, q) ∈ R, it
satisfies

• for all p′ ∈ CΣ and l ∈ L, if p
l→ p′, then q ⇒ q1

(l)→ q2 ⇒ q′ for some
q1, q2, q

′ ∈ CΣ such that (p, q1) ∈ R and (p′, q′) ∈ R.

Two closed terms p and q are η-bisimilar, p↔ηq, if and only if there exists an
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η-bisimulation relation R such that (p, q) ∈ R. Two closed terms p and q are
rooted η-bisimilar, p↔rηq, if the following conditions are satisfied:

• whenever p
l→ p′ there exist q1 and q′ such that q

l→ q1 ⇒ q′ and p′↔ηq
′;

• whenever q
l→ q′ there exist p1 and p′ such that p

l→ p1 ⇒ p′ and p′↔ηq
′.

Definition 24 (Delay Bisimilarity) A symmetric relation R ⊆ CΣ×CΣ is a
delay bisimulation relation if and only if, for all p, q ∈ CΣ such that (p, q) ∈ R,
it satisfies

• for all p′ ∈ CΣ and l ∈ L, if p
l→ p′, then q ⇒ q1

(l)→ q′ for some q1, q
′ ∈ CΣ

such that (p′, q′) ∈ R.

Two closed terms p and q are delay bisimilar, p↔dq, if and only if there exists
a delay bisimulation relation R such that (p, q) ∈ R. Two closed terms p and
q are rooted delay bisimilar, p↔rdq, if the following conditions are satisfied:

• whenever p
l→ p′ there exist q1 and q′ such that q ⇒ q1

l→ q′ and p′↔dq
′;

• whenever q
l→ q′ there exist p1 and p′ such that p⇒ p1

l→ p′ and p′↔dq
′.

Definition 25 Consider a TSS in the positive GSOS format, i.e., all premises
of all deduction rules are positive. For an operator f , the rules of f are the
rules with source f(−→x ).

An operator is straight if it has no rules in which a variable occurs multiple
times in the left-hand sides of its premises. An operator is smooth if moreover
it has no rules in which a variable occurs both in the target and the left-hand
side of a premise.

An argument i (1 ≤ i ≤ n) of an operator f is active if f has a rule in which
xi appears as the left-hand side of a premise.

A variable x occurring in a term t is receiving in t if t is the target of a rule in
which x is the right-hand side of a premise. An argument i of an operator f is
receiving if a variable x is receiving in a term t that has a subterm f(t1, . . . , tn)
with x occurring in ti.

Definition 26 (Patience Rule) A rule of the form

xi
τ→ y

f(x1, . . . , xn)
τ→ f(x1, . . . , xi−1, y, xi+1, · · · , xn)

with 1 ≤ i ≤ n is called a patience rule for the ith argument of f .

Definition 27 A TSS in GSOS format is two-tiered if its operations can
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be partitioned into abbreviations and principal operators, and for every ab-
breviation f a principal operator f ∗ is specified, together with a substitution
σf : {x1, . . . , xar(f)−1} → {x1, . . . , xar(f)−1}, such that the rules of f are σf (H)

f(−→x )
l→ σf (t)

∣∣∣∣∣∣
H

f ∗(−→x )
l→ t

is a rule of f ∗

 .

Definition 28 (Cool Formats) A TSS is WB cool if it is in the positive
GSOS format, is two-tiered, and (1) all principal operators are straight; (2)
patience rules are the only rules of principal operators with τ -premises; (3)
every active argument of a principal operator has a patience rule; (4) if ar-
gument i of f is receiving, then argument i of f ∗ has a patience rule; (5) all
principal operators are smooth.

The formats DB cool, HB cool and BB cool are defined likewise, but skipping
clause (4) for DB cool and BB cool and clause (5) for HB cool and BB cool.

For the case that there are only principal operators, the WB cool and BB cool
formats coincide with the ones of [22], whereas the DB cool format coincides
with the eb format of [135].

Theorem 29 (Congruence for Weak Notions of Bisimilarity) If a TSS
is in WB cool format, then ↔ w is a congruence. If a TSS is in DB cool for-
mat, then ↔ d is a congruence. If a TSS is in HB cool format, then ↔ η is
a congruence. If a TSS is in BB cool format, then ↔ b is a congruence.

Definition 30 (Ruloid) For transition rule r, let RHS(r) denote the set of
the right-hand sides of the premises of that rule. For a given TSS in positive

GSOS format, the class of ruloids is the smallest set that satisfies: (1)
x

l→ y

x
l→ y

is a ruloid, for every x, y ∈ V and l ∈ L; (2) if σ is a substitution, the given

tss has a rule
H

s
l→ t

for some H, s, t, l, and for every premise x
l′→ y in H

there is a ruloid ry =
Hy

σ(x)
l′→σ(y)

such that the sets RHS(ry) are pairwise

disjoint and each RHS(ry) is disjoint with var(σ(s)), then

⋃
y∈H Hy

σ(s)
l→σ(t)

is a

ruloid.

Definition 31 (RWB Cool Format) A TSS is in the RWB cool format if it
is positive and the operators can be partitioned into tame and wild ones, such
that (1) the target of every rule contains only tame operators; (2) the sub-TSS

of tame operators is in the WB cool format; (3) for each rule
H

s
a→ t

there is

a term u and a substitution σ : var(u) → var(s) such that there is a ruloid
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K

u
a→ v

with σ(K) = H and σ(v) = t, and for every premise x
c→ y in K, there

is a rule
σ(x)

τ→ y

s
τ→σ(u[y/x])

; (4) if argument i of f is receiving, then argument i

of f ∗ has a patience rule.

Theorem 32 (Congruence for Rooted Weak Bisimilarity) If a TSS is
in RWB cool format, then ↔ rw is a congruence.

Fokkink in [47] presents the RBB safe format which induces congruence for
rooted branching bisimilarity and generalizes the RB cool format of [22] to
the setting with negative premises and predicates. Fokkink admits that this
generalisation is complicated and that no examples are found in the literature
that are RB cool with abbreviations.

5.4 Other Congruence and Precongruence Formats

In this section, we discuss some formats for congruence and precongruence
from the literature. In [132], Ulidowski shows that the τDeS format from [130]
results in precongruence of the testing preorder from [106].

Definition 33 (τDeS Format) For a given deduction rule in the de Simone
format of the form

{xi
li→x′i | i ∈ I}

f(~x)
l→ t

with li 6= τ (for i ∈ I), the associated patience rules are the deduction rules of
the form

xi
τ→x′i

f(~x)
τ→ f(x1, . . . , xi−1, x

′
i, xi+1, . . . , xar(f)−1)

one for each i ∈ I.

A TSS is in the τDeS format when it has a finite signature, a finite set of
labels, a finite set of deduction rules and if its deduction rules consist of de
Simone deduction rules of the above form and their associated patience rules
only.

Obviously any TSS in τDeS format is also in the de Simone format.

Theorem 34 (Congruence for the τDeS Format [132]) Testing preorder
is a precongruence for any TSS in the τDeS format.

The τDeS format is a subformat of the GSOS format and therefore strong
bisimilarity is a congruence for any such TSS. Also, the τDeS format is a
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subformat of the ISOS format from [130]. Therefore, it gives congruence for
refusal simulation preorder [130] and eager bisimilarity [134].

Klin in [77] restricts the GSOS format to the CTr-format which guarantees
congruence for completed trace equivalence.

In [58], the ready simulation format is proposed that induces congruence for
ready simulation. This format is the ntyft/ntyxt format without the lookahead
feature. The ready simulation format is further restricted in [23] to obtain
pre-congruence for readiness, ready traces and failures pre-orders. Note that
pre-congruence for a pre-order implies congruence for the corresponding equiv-
alence (the kernel of the pre-order).

In [98], the higher-order panth format is presented which induces congruence
for higher-order bisimilarity [6].

The rule format of [147] guarantees that open-bisimilarity [122] is a congru-
ence. In [45], a rule format is presented which guarantees quasi-open bisimi-
larity to be a congruence.

In [39], tile bisimilarity is defined and syntactic criteria for guaranteeing its
congruence are presented.

In his seminal paper [72], Howe proposes a general method for proving pre-
congruence of applicative similarity (and thus congruence of applicative bisim-
ilarity [1]). Furthermore, [72] presents a rule format for pre-congruence of
applicative similarity. Along the same lines, the GDSOS format of [120], guar-
antees the existence and uniqueness of least fixed points for recursive semantic
definitions.

6 Conservativity of Language Extensions

Operational semantics of languages may be extended by adding new pieces of
syntax to the signature and new rules to the set of deduction rules. A number
of meta-theorems have been proposed to check whether extensions do not
change the behavior of the old language and whether they preserve equalities
among old terms. To extend a language defined by a TSS, one may have to
combine an existing signature with a new one. However, not all signatures
can be combined into one as the arities of the function symbols may clash.
To prevent this, we define two signatures to be consistent when they agree on
the arity of the shared function symbols. In the remainder, we always assume
that extended and extending TSS’s are consistent. The following definition
formalizes the concept of operational extension.
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Definition 35 (Extension of a TSS) Consider TSS’s tss1 = (Σ1, D1) and
tss2 = (Σ2, D2) with consistent signatures. The extension of tss1 with tss2,
denoted by tss1 ⊕ tss2, is defined as (Σ1 ∪ Σ2, D1 ∪D2).

Traditionally, an extension of a TSS is called operationally conservative w.r.t.
the original one when no new transitions and predicates can be derived for
old terms. In [65], Groote and Vaandrager present the first meta-theorem for
establishing operational conservativity. It applies to TSS’s that are in the
tyft/tyxt format and for which the old deduction rules are pure (and thus
well-founded) and the new deduction rules must contain a new operator in
the source of the conclusion. Subsequently, Groote [64] extends this result
to TSS’s with negative premises (ntyft/ntyxt), and Bol and Groote [25] show
that the restriction to the ntyft/ntyxt format can be omitted as long as the
TSS is complete (positive after reduction). Verhoef, in [143], broadens the
applicability of the meta-theory by allowing new deduction rules with an old
term as a source under certain conditions.

More general instances of meta-theorems for operational conservativity are
formulated in [51,87,145]. In the rest of this section, we review the results
of [51], which gives the most detailed account of this issue. The work in [51]
extends the previously mentioned works with many-sorted signatures and gen-
eral binding mechanisms.

In [51], it is recognized that there are several ways of giving meaning to a TSS
with negative premises. Fokkink and Verhoef present a definition of operational
conservativity, given below, that is stronger than the traditional definition in
the sense that it implies the traditional notion of conservative extension for
several such interpretations including the three-valued stable model interpre-
tation (Definition 8).

Definition 36 (Operational Conservativity) Given two TSS’s tss1 and
tss2, tss1 ⊕ tss2 is an operationally conservative extension of tss1 if for each

derived deduction rule
N

C
of tss1⊕tss2 with N a set of negative closed formulae

and C a positive closed formula with a source from the signature of tss1, we
have that it is also a derived deduction rule of tss1.

Definition 37 (Fresh Terms) Let Σ1 and Σ2 be signatures. Freshness of a
term over signature Σ2 w.r.t. signature Σ1 is defined inductively as follows:
(1) f( ~n1.t1, . . . , ~nar(f).tar(f)) is fresh if f is in Σ2 but not in Σ1 or ti is fresh
for some 1 ≤ i ≤ ar(f), (2) t[t′/n] is fresh if t is fresh.

Next, we formulate sufficient conditions to prove operational conservativity.
But before that, we need a few auxiliary definitions. The notion of source-
dependency replaces the notions pure and well-founded as used by [65].
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Definition 38 (Source-Dependency) For a deduction rule d, and a col-
lection of sorts S, the source-dependent variables modulo S in d are defined
inductively as follows:

• All variables appearing outside the substitution harness in the source of the
conclusion of a deduction rule are source-dependent modulo S in d;

• All variables of sort S for some S ∈ S are source-dependent modulo S in d;
• All variables that occur in the label or the target of a positive premise of

deduction rule d outside a substitution harness are source-dependent modulo
S in d if all variables in the source of the premise are source-dependent
modulo S in d.

Definition 39 (Reduced Rules) For a deduction rule d = (H, c), the re-
duced rule with respect to a signature Σ is defined by ρ(d,Σ)

.
= (H ′, c) where

H ′ is the set of all premises from H which have a Σ-term as a source.

Theorem 40 (Operational Conservativity Meta-Theorem [51]) Given
two TSS’s tss1 = (Σ1, D1) and tss2 = (Σ2, D2), tss1⊕tss2

9 is an operationally
conservative extension of tss1 if:

(1) S is a collection of sorts such that for each S ∈ S there are no fresh
terms of sort S from TΣ1∪Σ2 w.r.t. Σ1;

(2) for all d1 ∈ D1, all variables that occur in d1 are source-dependent modulo
S in d1;

(3) for all d2 ∈ D2 at least one of the following holds:
(a) the source of the conclusion is fresh, or

(b) ρ(d,Σ1) has a source-dependent positive premise t
l→ t′ or (l) ↓ t such

that t ∈ TΣ1, all variables that occur in t are source-dependent modulo
S in ρ(d,Σ1), and one of the terms appearing in l is fresh.

In [101], a slightly more liberal notion of operational conservativity, called
orthogonality, is introduced and a meta-theorem is proposed for it. Orthog-
onality allows for the addition of new transitions and predicates on the old
syntax provided that these new transitions and predicates do not change the
behavioral equalities among old terms.

7 Generating Equational Theories

Equational theories are central notions to process algebras [8,19,71,90]. They
capture the basic intuition behind the algebra, and the models of the algebra

9 Note that although the notation ⊕ has been defined for TSS’s with a designated
sort for labels (i.e., a TSS in triple notation), it is possible to define ⊕ on more
general TSS’s (thus represented by a tuple) in a meaningful way as well.
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are expected to respect this intuition (e.g., the models induced by operational
semantics modulo bisimilarity). One of the benefits of having equational the-
ories is that they enable reasoning at the level of syntax without committing
to particular models of the semantics. When the semantic model of behavior
(e.g., the transition system associated to a term) is infinite, these techniques
may come in very handy.

To establish a reasonable link between the operational model and the equa-
tional theory of the algebra, a notion of behavioral equality should be fixed.
Ideally, the notion of behavioral equivalence should coincide with the closed
derivations of the equational theory. One side of this coincidence is captured
by the soundness theorem which states that all closed derivations of the equa-
tional theory are indeed valid with respect to the particular notion of behav-
ioral equality. The other side of the coincidence, called completeness, states
that all induced behavioral equalities are derivable from the equational theory,
as well. These concepts are formalized in what follows.

Definition 41 (Equational Theory) An equational theory or axiomatiza-
tion (Σ, E) is a set of equalities E on a signature Σ of the form t = t′, where
t, t′ ∈ T . A closed instance p = p′, for some p, p′ ∈ CΣ, is derivable from E,
denoted by E ` p = p′, if and only if it is in the smallest congruence relation
on closed terms induced by the equalities of E.

An equational theory (Σ, E) is sound with respect to a TSS tss (also on sig-
nature Σ) and a particular notion of behavioral equality ∼ if and only if for
all p, p′ ∈ CΣ, if E ` p = p′, then it holds that tss ` p ∼ p′. It is complete if
the implication holds in the other direction.

In [3], an automatic method for generating sound and complete equational
theories from GSOS specifications is presented. It is assumed that there are
only transition relations → ⊆ CΣ × L× CΣ.

Definition 42 (Disjoint Extension) Consider TSS’s tss1 = (Σ1, L1, D1)
and tss2 = (Σ2, L2, D2). TSS tss2 is a disjoint extension of a TSS tss1 if and
only if Σ1 ⊆ Σ2 and D1 ⊆ D2 and the operators from Σ1 do not occur in the
sources of the deduction rules from D2 \D1.

Next, we define when a TSS does not allow infinite traces. Such a TSS is
called trace-finite. 10 In [3], also syntactic criteria are given for establishing
trace-finiteness of a TSS.

Definition 43 (Trace-Finiteness) Let tss be a TSS in the GSOS format. 11

10 In [3], trace-finiteness is called well-foundedness. We have used this term already
to name another property in Section 4.
11 In [3], this notion is defined for TSS’s w.r.t. the supported model semantics. As
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A term p ∈ CΣ is trace-finite iff there exists no infinite sequence p1, l1, p2, l2, . . .

of closed terms pi and labels li such that p ≡ p1 and, for all i ≥ 1, pi
li→ pi+1.

The TSS tss is trace-finite iff all terms in CΣ are well-founded.

Theorem 44 Let tss be a trace-finite TSS in the GSOS format. Then, there
are a disjoint extension tss′ of tss and a finite equational theory T ′ such that
T ′ is a sound and complete axiomatization of bisimilarity on closed terms from
tss′.

A generalization of this result to even non-trace-finite TSS’s is also presented in
[3], though this requires the addition of the Approximation Induction Priciple
(AIP) from [10] to the equational theory.

Theorem 45 Let tss be a trace-finite TSS in the GSOS format. Then, there
are a disjoint extension tss′ of tss and a finite equational theory T ′ such that
T ′ extended with AIP is a sound and complete axiomatization of bisimilarity
on closed terms from tss′.

The techniques from [3] were extended in [15] to cater for explicit termination
of processes. This approach, although more complicated in nature, gives rise
to more intuitive and more compact sets of equations compared to the original
approach of [3]. The resulting format is called the tagh format. The name tagh
format denotes termination and GSOS hybrid format. It is assumed that there
are only transition relations → ⊆ CΣ × L× CΣ and predicates ↓⊆ CΣ.

Definition 46 (Tagh Format) A deduction rule is in the tagh format if and
only if it has one of the following forms:

(1) a tagh-transition rule

{xi
lip→ yip | i ∈ I, p ∈ Pi} ∪ {xj

l′9 | j ∈ J, l′ ∈ Bj} ∪ {↓ xk | k ∈ K}

f(~x)
l→ t

where I, J,K ⊆ {1, · · · , ar(f)}; for all i ∈ I, Pi is a non-empty finite
index set; for all j ∈ J , Bj ⊆ L; for 1 ≤ m ≤ ar(f), i ∈ I, and p ∈ Pi,
xm and yip are pairwise distinct variables; vars(t) ⊆ {x1 . . . , xar(f)}∪{yip |
i ∈ I, p ∈ Pi};

(2) a tagh-termination rule
{↓ xk | k ∈ K}

↓ f(~x)

where x1, . . . , xar(f) are pairwise distinct variables and K ⊆ {1, . . . , ar(f)}.

we only use the term for TSS’s in the GSOS format, there is no misunderstanding
about the meaning of a TSS regardless the chosen semantics.
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A TSS is in the tagh format when it has a finite signature, a finite set of
labels, a finite set of deduction rules and all its deduction rules are in the tagh
format.

The above definition of the tagh format is different from the original defini-
tion from [15] in the sense that there it is assumed that certain operators and
deduction rules are present in the TSS. We changed the definition to facilitate
comparison of the following theorem to the results from [3] and [4]. It is obvi-
ously the case that the tagh format extends the GSOS format and is subsumed
by the panth format.

Theorem 47 Let tss be a TSS in the tagh format. Then, there are a disjoint
extension tss′ of tss and a finite equational theory T ′ such that T ′ extended
with AIP is a sound and complete axiomatization of bisimilarity on closed
terms from tss′.

The GSOS and the tagh formats only allow the generation of an axiomatiza-
tion in case the signature, the set of action labels, and the set of deduction
rules are finite. In [4], Aceto defines the infinitary GSOS format. It extends the
GSOS format by allowing for a countable signature, a countable set of action
labels, and a countable set of deduction rules. Then, the sub-format regular
GSOS allows for generation of a complete and sound axiomatization, contain-
ing the Recursive Specification Principle [16] of bisimilarity. The restrictions
that are covered by this regular GSOS format only allow for the specification
of processes with a finite labelled transition system.

Bloom [22] has shown that the approach of [3] can also be used for generating
axioms for ↔rb, and [61] claims that this is also the case for ↔rη. In the latter
work, also an adaptation of the approach of [3] is presented that yields finite
sound and complete axiomatizations for ↔rb and ↔rd.

Axiom systems for pre-orders have been generated, too, see for instance [132].
Along the same lines, [133] generates prioritized rewrite systems for TSS’s
with an ordering on deduction rules (see Section 8). Here we present the
axiomatization results of [132] for the τDeS format (see Definition 33).

Theorem 48 Let tss be a trace-finite TSS in the τDeS format. Then, there
are a disjoint extension tss′ of tss and a finite equational theory T ′ such that
T ′ is a sound and complete axiomatization of testing preorder on closed terms
from tss′.

In [131], a similar result is obtained for refusal simulation [130].

The condition of well-foundedness can be replaced by the weaker condition of
τ -convergence in combination with the introduction of an induction principle à
la AIP. In [105], a meta-theorem is developed to generate sound commutativity
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axioms from TSS’s in the tyft/tyxt format.

8 Ordered SOS

Ordered SOS [135] replaces the need for negative premises by adding an or-
dering among rules. A formal definition of Ordered SOS is given below.

Definition 49 (Ordered TSS) An Ordered TSS is a pair (tss,<) where tss
is a TSS containing only positive GSOS rules and < is a class of (partial)
orders <f for all function symbols f in the signature.

As explained informally in Section 2.3, the idea of Ordered SOS is to assert the
impossibility of certain transitions (thus, test negative premises) by attempt-
ing to apply initially rules higher in the ordering that contain these transitions
in the premises. The following example illustrates this.

Example 50 Consider the following deduction rules:

(r)
x

a→ y

f(x)
a→ f(y)

(r′)
x

b→ y x
a9

f(x)
a→ f(y)

The right-hand-side rule checks for impossibility of a-transitions on the only
argument of f . In Ordered SOS, this check can be replaced by declaring (r′′) <f

(r), where deduction rule (r′′) is obtained from deduction rule (r′) by removing
the negative premise. Then, by the semantics of Ordered SOS, it is guaranteed
that the (r′′) can only be applied when (r) cannot and thus, when the argument
x cannot make an a-transition.

To realize this, the semantics of Ordered SOS is defined as follows.

Definition 51 Consider an ordered TSS ((Σ, L,D), <). Let size(p) be the size
of closed term p which is defined to be 1+max({size(pi) | 1 ≤ i ≤ ar(f)}) for
p = f(~p). Also for an f -rule r ∈ D, let higher(r) be {r′ | r <f r

′}. Then, the
transition relation → induced by (tss,<) is

⋃
k<ω → k, where → k is defined

below.

p
a→ p′ ∈ → k when size(p) = k ∧

∃r∈D,σ:V→CΣ
σ(conc(r)) = p

a→ p′ ∧

σ(pre(r)) ⊆ ⋃
m<k →m ∧

∀r′∈D r′∈higher(r) ⇒ σ(pre(r′)) * ⋃
m<k →m
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Here pre(r) and conc(r) denote the set of premises and the conclusion of a
deduction rule r, respectively.

It is shown in [135] that every transition system definable by a TSS in the
GSOS format is definable by Ordered SOS and vice versa. The idea of the
translation from GSOS to Ordered SOS is very similar to the idea of Example
50, that is, rules with negative premises are placed below rules that have a
positive premise on the same argument. Such rules (with appropriate positive
tests) are not always present and to remedy this, one has to add some auxiliary
rules with such premises and set their order in such a way that these auxiliary
rules can never be applied themselves but can indeed replace the negative tests
for rules below them. For the converse direction, the GSOS translation of a
rule r, is a set of rules (with the same conclusion as that of (r)), each of which
have the premises of (r) together with a set of premises making sure that the
rules above (r) are all not applicable.

In [135], it is shown that taking the ordering relation to be a partial order
does not have any consequence for the expressiveness of definable Ordered
SOS languages. In [99], a general approach to the semantics of ordered SOS
is studied along the lines of [60].

9 Timed Properties

Timed extensions of programming and specification languages allow one to
specify and reason about (quantitative) temporal properties of programs and
specifications. The extension of an operational semantics with time is usually
realized by adding a time transition relation to the transition system (see e.g.,
[94]) or sometimes by annotating the action transitions with timing informa-
tion. In the remainder, we only consider the former approach for it is the only
approach studied in the SOS meta-theory.

There are several design decisions involved in the process of extending a lan-
guage with time (e.g., the dilemmas concerning absolute vs. relative time, in-
stantaneous vs. durational actions and different time progress assumptions).
One of the main decisions in such extensions concerns the choice of time do-
main. The simplest time domain is the discrete time domain which comes
equipped with a total ordering, a zero and a next constructor (i.e., non-
negative natural numbers). More involved time domains can be dense or par-
tially ordered. In the remainder, we concentrate on the timed properties con-
cerning timed extensions with a discrete (and totally ordered) time-domain.
Initial results about an arbitrary time domains are given [76] but they are
very complicated and very much geared towards a particular timed process
algebra.
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In order to extend a language with a discrete-time aspect, it suffices to add
a new transition relation  representing a unit-time delay (together with a
number of time-related operators such as an operator for specifying deadlines).

In [136], a number of timed properties are studied in the context of ordered
SOS languages with a notion of divergence-sensitive rooted delay bisimilarity,
called rooted eager bisimilarity. The timed properties studied in [136] are listed

below. In what follows, p (p
l→ ) means that there exists a p′ such that

p p′ (p
l→ p′), p ⇓ means that p converges, i.e., there is no infinite succession

of τ -steps starting from p. Below, p, p′ and p′′ are closed terms and are all
universally quantified.

(1) Time determinism: if p p′ and p p′′ then p′ = p′′;
(2) Timelock freeness: p ;
(3) Weak timelock freeness: if p ⇓ then p(⇒ ◦ );
(4) Maximal (time) progress: if p

τ→ then p 6 ;
(5) Patience (non-urgency): if p

τ9 then p ;

(6) Time persistence: if p
l→ and p p′ then p′

l→ , for any l.

Sufficient conditions for satisfying the above properties are given in [136]. To
do this, first a set of syntactic criteria on the ordered operational rules are
defined in order to guarantee that rooted eager bisimilarity is a congruence.
Operators with rules satisfying the syntactic criteria are called rebo (for rooted
eager bisimulation ordered) operators. The main feature of rebo operators is
that τ -transitions only appear in patience rules (see Definition 25). Such rules
have a special syntactic form and satisfy some constraints with respect to their
ordering.

Then, an extension of a language with rebo operators into time settings is
defined (timed rebo languages) which guarantees congruence of (timed) rooted
early bisimilarity and time determinism. Such an extension adds appropriate
discrete-time-transition rules which are in accordance with the definition and
ordering of the patience rules in the original language. Subsequently, further
restrictions are put on timed rebo languages which guarantee patience (weak
timelock freeness), timelock freeness and time persistence.

In [76], a syntactic format is developed which induces congruence for strong
(timed) bisimilarity and time-determinism for languages with a discrete no-
tion of time. To do this, GSOS languages are taken as the basis and their
timed extension is defined as the partitioning of the language into action and
time description parts. Thus, rules with an action transition in the conclusion
cannot have time transitions in their premises and vice versa. Then, in addi-
tion to GSOS constraints, the time-transition part should satisfy the syntactic
criteria of the dsl format defined below.
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Definition 52 (Dsl Format) A rule of the following form is called a dsl-
prerule (for “deterministic single label” rule).

{xi yi | i ∈ I} ∪ {xj 6 | j ∈ J}

f(~x) t

where I and J are subsets of {k | 1 ≤ k ≤ ar(f)}, all yi’s (for all i ∈ I)
and variables in ~x are pairwise distinct and vars(t) ⊆ {xk, yi | 1 ≤ k ≤
ar(f), i ∈ I}. A dsl-prerule is consistent if I ∩ J = ∅ and complete if I ∪ J =
{k | 1 ≤ k ≤ ar(f)}. A consistent and complete dsl-prerule is called a dsl-rule.

A set of dsl-rules is in dsl format when for all two f -rules of the following
shapes:

{xi yi | i ∈ I} ∪ {xj 6 | j ∈ J}

f(~x) t

{xi yi | i ∈ I ′} ∪ {xj 6 | j ∈ J ′}

f(~x) t′

it holds that (I ∩J ′)∪ (I ′∩J) 6= ∅. Such f -rules are called mutually exclusive.

Theorem 53 For a TSS in GSOS format where deduction rules with an ac-
tion transition in the conclusion cannot have time transitions in their premises
and deduction rules with a time transition in the conclusion are in the dsl for-
mat, time-transitions are deterministic and timed bisimilarity is a congruence.

It is informally argued (and the arguments seem correct) that the consistency
and completeness conditions can be relaxed. Thus, a set of mutually-exclusive
dsl-prerules is sufficient for the purpose of Theorem 53.

10 Probability-Related Properties

There are several sorts of operational semantics for probabilistic systems which
have different combinations of probability distribution and non-determinism
(see [124,17] for an overview).

Two leading examples of probabilistic semantics are reactive and generative
semantics. In the reactive semantics, the discrete probability distribution is
defined for each label l of outgoing transitions while for the generative model,
the discrete probability distribution is defined on all outgoing transitions (pos-
sibly with different labels). (A discrete probability distribution µ, or just a
distribution, on set S is a function µ : S → [0, 1] such that

∑
s∈S µ(s) = 1.)

For a closed term p, a reactive probabilistic transition with a label l and

distribution µ on closed terms, is denoted by p
l→  µ. Intuitively, this means
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that term p can make an l transition to term q (in the domain of µ) with
the probability µ(q). A generative transition from term p with distribution µ
on the product of labels and terms (i.e., L × CΣ) is denoted by p µ. For

both types of systems, we write p
a[ρ]→ q and by that, for reactive system, we

mean p
a→  µ and µ(q) = ρ and for generative system, we mean p µ and

µ(a, q) = ρ. Notions of bisimilarity for reactive and generative systems are
defined as follows [81,62,124].

Definition 54 (Reactive Probabilistic Bisimilarity [81]) Let P and Q
be arbitrary sets. Consider a relation R ⊆ P × Q. Then the lifting of R ⊆
(P → [0, 1])× (Q→ [0, 1]) , denoted by ≡R, is defined as follows.

For two distributions µ : P → [0, 1] and µ′ : Q → [0, 1], µ ≡R µ′ when there
exists a distribution ν : (P ×Q) → [0, 1] satisfying the following constraints.

• ∀p∈P
∑

q∈Q ν(p, q) = µ(p);
• ∀q∈Q

∑
p∈P ν(p, q) = µ′(q);

• ∀p∈P,q∈Qν(p, q) 6= 0 ⇔ (p, q) ∈ R.

A symmetric relation R ⊆ CΣ × CΣ is a reactive bisimulation relation when
for all p, q ∈ CΣ, if p

a→  µp then there exists a µq such that q
a→  µq and

µp ≡R µq.

Definition 55 (Generative Probabilistic Bisimilarity [62]) Consider an
equivalence relation R ⊆ P ×P . The A-lifting of R is denoted by ≡A,R and is
defined as follows.

For distributions µ, µ′ : (L×P ) → [0, 1], µ ≡A,R µ′ when ∀a∈A ∀p∈P
∑

q∈[p]R µ(a, q)
=

∑
q∈[p]R µ

′(a, q).

A symmetric relation R ⊆ CΣ × CΣ is a generative bisimulation relation when
for all p, q ∈ CΣ, if p µp then there exists a µq such that q µq and µp ≡A,R

µq.

In [18], operational semantics for probabilistic systems is studied from a cat-
egorical viewpoint by Bartels and the results are translated in the form of
concrete rule formats for probabilistic systems. In particular, Bartels defined
the following rule format, called PGSOS (for Probabilistic GSOS) for reactive
probabilistic systems.

Definition 56 ([Probabilistic GSOS Format) A deduction rule is in the
PGSOS format when it is of the following form.

{xi
ai→ yi | i ∈ I} ∪ {xj

aj9 | j ∈ J} ∪ {xk
ak[ρk]→ yk | 1 ≤ i ≤ ar(f), k ∈ K}

f(−→x )
a[w.

∏
k∈K

ρk]
→ t
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where (common to GSOS) variables in −→x , yi’s and yk’s are all pairwise dis-
tinct, I and J are subsets of {i | 1 ≤ i ≤ ar(f)}, K is a finite index set, ρk’s
are pairwise distinct probability variables, w ∈ (0, 1] is the weight of the rule,
vars(t) ⊆ vars(−→x ) ∪ {yk | k ∈ K} and {yk | k ∈ K} ⊆ vars(t).

A trigger of such a rule is a set E such that {ai | i ∈ I} ⊆ E and E ∩ {aj |
j ∈ J} = ∅ (there might be more than one trigger for each rule).

A TSS in the PGSOS format has a set of rules such that for all function
symbols f , the number of f -rules with label a and a trigger E is finite and if
there are any f -rules with label a and a trigger E, their probability weights
sum up to 1.

The following theorem specifies the properties that can be proven for TSS’s
conforming to the PGSOS format.

Theorem 57 A TSS conforming to the PGSOS format, defines a reactive
operational semantics (i.e., the probabilities of transitions with each label sum
up to 0 or 1, also called semi-stochasticity), such that reactive probabilistic
bisimilarity is a congruence and guarded recursive equations have a unique
solution up to reactive probabilistic bisimilarity.

In [78], the following rule format is defined for generative probabilistic systems.

Definition 58 (PB Format) A rule is in the PB format when it has the
following form.

{xi
a[ρi]→ yi | i ∈ I} ∪ {xj

Aj [ρj ]→ | j ∈ J} ∪ {xk
Ak→ | k ∈ K}

f(−→x )

a[w.

∏
i∈I

ρi∏
j∈J

(1−ρj)
]

→ t

where I, J and K are subsets of {i | 1 ≤ i ≤ ar(f)}, (for all i ∈ I, j ∈ J and
k ∈ K) variables in −→x and yi’s are all pairwise distinct, Ai ⊆ A, Ak ⊆ A,
if i = j then ai /∈ Aj, ρi’s and ρj’s are pairwise distinct probability variables
(ranging over (0, 1] and [0, 1), respectively), w ∈ (0, 1] is the weight of the rule

and vars(t) ⊆ vars(−→x ) ∪ {yk | k ∈ K}. The set {xi
a[ρi]→ yi | i ∈ I} is called

the set of active premises of the above rule.

An ordered TSS in the PB format is a TSS plus a stratification (an ordering)
function R from {0, . . . , n} (for some n ∈ IN) to the set of rules such that for
all i ≤ n, for all f -rules in R(i):

(1) the sets of premises {xj
Aj [ρj ]→ | j ∈ J} and {xk

ak→ | k ∈ K} are the same;
(2) the sets of variables {xi | i ∈ I} are the same;
(3) for all j ∈ J , let U ⊆ I be the set satisfying for all u ∈ U , if u = j and
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au /∈ Aj, then there exists an f -rule in R(i) with {xu
au[ρu]→ yu | u ∈ U} as

the set of its active premises.
(4) the weights of all f -rules in R(i) sum up to 1 (if any such rule exists).

The intuition behind premises of the form xj
Aj [ρj ]→ is that the probabilities

of transitions with labels in Aj sum up to ρj and xk
Ak→ means that at least

one transition (with a non-zero probability) is possible with a label in Ak.
The conditions on f -rules in the same stratum guarantee that f -rules in the
same stratum are either all enabled or all disabled and using this, one can
guarantee, using the last item, that the semantics is indeed semi-stochastic.
The semantics induced by a TSS of the above form is defined in [78] and the
following theorem summarizes the properties of such semantics.

Theorem 59 For an ordered TSS in the PB format, the probabilities of out-
going transitions from each closed term sum up to 0 or 1 and the generative
bisimilarity is a congruence.

11 Expressiveness

As can be noted from Figure 1 and the discussions in Section 3, several syntac-
tic ingredients can be present or absent in a particular syntactic rule format,
and thus, it is interesting to know whether adding certain features will increase
the expressive power of the format. In a more general sense, this question can
be generalized to the question concerning the class of transition systems that
a certain rule format can specify. Different approaches have been taken in
answering this question.

The first expressiveness result was given by de Simone in [42] where he shows
that any operator definable in his format can be defined in terms of SCCS-
Meije operators up to strong bisimilarity. Also, in [109] Parrow shows that all
operators definable by a restricted form of the de Simone format (called asyn-
chronous rules) can be defined in terms of a few primitives (called modules)
and two operators: a binary disjoint parallel composition | and unary linking
〈a, b〉 which hides the result of synchronization.

In [24], it has been proved that the operational semantics induced by a TSS
in the GSOS format is effective, i.e., for each state (of the countable many
ones available) the number of outgoing transitions and the next states can be
computed. In [137] a general theorem has been proven showing that there is
no effective operational semantics on a enumerable syntax and with more than
one label that can denote all effective process graphs up to trace equivalence
(or any other stronger behavioral equivalence). It follows from this theorem
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that there exists an effective process graph that cannot be specified by any
TSS in the GSOS format up to trace equivalence. There is a guardedness and
finiteness assumption on the signature in the GSOS format which does not
allow one to specify process graphs that are not guarded or effective. The
effect of relaxing these assumptions is studied in [137].

Another major approach to expressiveness is to characterize the finest completed-
trace congruence induced by operators definable using a certain rule format.
The idea is to take an arbitrary language definable by a format with an op-
erational semantics and measure the expressive power of the rule format by
adding new operators to the language and checking how much we can tell
the difference between old processes by putting them into newly defined con-
texts. In [24], it is shown that the finest completed-trace congruence induced
by GSOS definable operators is ready simulation, thus the title of their paper
“Bisimulation Can’t be Traced”. Groote and Vaandrager studied the same
issue for the tyft/tyxt format and proved that the finest completed-trace con-
gruence induced by definable tyft/tyxt operators is 2-nested simulation. For
ntyft/ntyxt, it was shown in [64] that the finest completed-trace congruence is
strong bisimilarity, which is a good indication of the added expressiveness of
ntyft/ntyxt in comparison with its subsets GSOS and tyft/tyxt.

In [48], it is shown that the well-foundedness assumption can be relaxed from
the ntyft/ntyxt format and for all non well-founded TSS’s in the ntyft/ntyxt
format there exists a TSS in the NTree format (defined below, with a potential
infinite blow up in the number of rules) that defines the same three-valued
model.

Definition 60 (NTree (Tree) Format) A TSS in the ntyft/ntyxt (tyft/tyxt)
format is in the NTree (Tree) format when the left-hand sides of the positive
premises are variables and the variable dependency graphs of all rules are well-
founded.

Note that the left-hand side of negative premises can still contain composite
terms and it has been shown in [48] that restricting the left-hand side of
negative premises to variables, i.e., restricting to the so-called nxyft format,
reduces the expressiveness in the sense that there exists a transition relation
which is definable by a TSS in the ntyft/ntyxt (and thus the NTree) format
but not by any TSS in the nxyft format.

In [103], it is shown that, unlike in the (n)tyft/(n)tyxt case, dropping the well-
foundedness assumption from the promoted tyft format will jeopardize the
congruence result. Furthermore, the expressiveness (i.e., the set of specifiable
transition relations) of the tyft, the promoted tyft, and the positive subset of
the promoted panth formats are compared in [103] and it is showed that while
the tyft format with closed terms is incomparable to the promoted tyft format,
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the positive subset of the promoted panth format is strictly more expressive
than both.

12 Reasoning Techniques

In [69], a logical framework, nowadays called Hennessy-Milner logic after the
authors’ names, is proposed. Hennessy-Milner logic can be used to reason
about processes and characterize their equalities. The syntax of Hennessy-
Milner logic (with infinite conjunction and without recursion) is defined as
follows:

Φ ::=
∧
i∈I

Φi | 〈l〉Φ | ¬Φ

where I is an index set (possibly infinite) and ⊥ stands for conjunction with
I = ∅. Truth of a Hennessy-Milner formula φ ∈ Φ is defined with respect
to a particular process p, denoted by p � φ. The intuition behind p � 〈l〉φ
is that 〈l〉φ is true for p when there exists a p′ such that p

l→ p′ and φ is
true for p′. The intuitions behind conjunction and negation are as expected.
In [89,70], it is shown that Hennessy-Milner logic is sound and adequate for
strong bisimilarity, meaning that two processes are bisimilar if and only if they
satisfy the same set of Hennessy-Milner formulae.

In [79,80] a meta-theory is developed that allows for decomposing Hennessy-
Milner formulae using the structure of terms in a generic way by examining
deduction rules of the process language in the de Simone format. This result
has been improved in [49] and extended to both the ready simulation format
(ntyft/ntyxt format without lookahead) and the tyft/tyxt format. The technique
developed in [49] defines for each term t and each logical formula φ, a set of
mappings ψ : vars(t) → Φ from variables of term t to logical formulae such
that φ is true for p = σ(t) if and only if for at least one of such mappings,
σ(x) � ψ(x) for all x ∈ vars(t). Below, we quote a simple example from [49]
to better illustrate the idea.

Example 61 Consider the following deduction rules

a.x
a→x

x
a→x′

x || y a→x′ || y

y
a→ y′

x || y a→x || y′

and a Hennessy-Milner formula φ = 〈a〉〈b〉>. Then p || q � φ if and only if at
least one of the following cases holds:

• p � 〈a〉〈b〉>;
• q � 〈a〉〈b〉>;
• p � 〈a〉> and q � 〈b〉>;
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• p � 〈b〉> and q � 〈a〉>.

For the decomposition to work effectively on variables, the rules in tyft/tyxt
format and the rules in ready simulation format have to be reduced to rules
in which the source of the premises are only variables. Thus, the notion of
nxytt-ruloids is used (called P -ruloids in [49]; see Definition 30) to denote all
derivable rules with variables as the source of premises (and in the case of the
ready simulation format, without lookahead). The detailed construction for
ruloids and their properties can be found in [49].

Common to the above example, the decomposition method defines for each
process p, a function −−1 : TΣ → (Φ → P(V → Φ)) which for each term and
logical formula, gives a set of mappings from variables to logical formulae:

• For φ = 〈l〉φ′, and an arbitrary term t, define ψ : vars(t) → Φ ∈ t−1(φ)

when there exists an nxytt-ruloid
H

t
l→u

, and there exists a χ ∈ u−1(φ) as

ψ(x) =


∧

x
l′→ y∈H

〈l′〉ψ(y) ∧ ∧
x

l′′9∈H
¬〈l′′〉> ∧ χ(x) if x ∈ vars(u)∧

x
l′→ y∈H

〈l′〉ψ(y) ∧ ∧
x

l′′9∈H
¬〈l′′〉> if x /∈ vars(u);

• For φ =
∧

i∈I φi, and an arbitrary term t, define ψ : vars(t) → Φ ∈ t−1(φ)
when there are ψi : vars(t) → Φ ∈ t−1(φi) (for all i ∈ I) as:

ψ(x) =
∧
i∈I

ψi(x);

• For φ = ¬φ′, and an arbitrary term t, define ψ : vars(t) → Φ ∈ t−1(φ) when
there exists a function h : t−1(φ) → vars(t) as:

ψ(x) =
∧

χ∈h−1(x)

¬χ(x).

In [50], the decomposition technique is used to derive congruence formats for
the notion of eta-bisimilarity, as an example.

Simpson in [123] introduces a compositional proof system for checking Hennessy-
Milner formulae on processes specified in the GSOS format. The proof calculus
is in the natural deduction style and uses sequents that combine judgements
about logical formulae (of the form p : φ, meaning that p satisfies φ) and tran-

sition formulae (of the form p
l→ q). The deduction rules concerning Hennessy-
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Milner formulae (restricted to final conjunction) are the following:

Γ =⇒ p : >
Γ, p : φ =⇒ ∆

Γ =⇒ p : ¬φ,∆
Γ, p : ¬φ =⇒ ∆

Γ =⇒ p : φ,∆

Γ, p : φ, p : ψ =⇒ ∆

Γ, p : φ ∧ ψ =⇒ ∆

Γ =⇒ p : φ, p : ψ,∆

Γ =⇒ p : φ ∧ ψ,∆

Γ, p
l→x, x : φ =⇒ ∆

Γ, p : 〈l〉φ =⇒ ∆

Γ =⇒ p
l→ q,∆ Γ =⇒, q : φ,∆

Γ =⇒ p : 〈l〉φ,∆

where in the rule concerning the introduction of 〈l〉φ on the left-hand-side, x
should not appear anywhere else in the rule.

The following rules concerning transition formulae are mainly derived from
the corresponding GSOS rules and the intuition behind transition formulae.

Γ, p
l→ q =⇒ ∆

Γ =⇒ p
l9 q,∆

Γ, p
l9 =⇒ ∆

Γ =⇒ p
l→ q,∆ Γ, x

l→ y =⇒ x
l9 y,∆

{Γ =⇒ pi
lij→ qij,∆ | i ∈ I, 1 ≤ j ≤ mi}, {Γ =⇒ pj

ljk9 ,∆ | j ∈ J, 1 ≤ k ≤ nj}
Γ =⇒ f(−→p )

l→ t[~x 7→ ~p, yij 7→ qij],∆

Γ[t[~x 7→ ~p]/x], {pi
lij→ qij | i ∈ I, 1 ≤ j ≤ mi}, {pj

ljk9 | j ∈ J, 1 ≤ k ≤ nj}

=⇒ ∆[t[~x 7→ ~p]/x]

Γ, f(−→p )
l→x =⇒ ∆

where the above rules concerning the transition of f(~p) are present for all (lists
of) closed terms ~p, and qij and all deduction rules of the following form in the
TSS.

{xi
lij→ yij | i ∈ I, 1 ≤ j ≤ mi} ∪ {xj

ljk9 | j ∈ J, 1 ≤ k ≤ nj}

f(−→x )
l→ t

Soundness and completeness (relative to a class of assumptions) are proved in
[123] for the above proof system.
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13 Implementation

13.1 Term Rewriting

Several authors have studied the, rather evident, link between rewriting logic
[83] and SOS both from a theoretical [43,83–85] as well as practical point of
view [30,31,140,142].

In [30], the outline of a translation from Modular SOS (MSOS) [97,96] to the
Maude rewriting logic is given and proven correct. The translation is quite
straightforward and the main technical twist is in the decomposition of labels
into the configurations in the source and the targets of the transitions which is
due to the structure of labels in MSOS. The translation is fully implemented
and details of this implementation can be consulted in [29]. [32] reports an
extension of the Maude Modular SOS Tool (MMT) with Maude’s Strategy
Language (MSL) which allows for defining strategies for animating (M)SOS
specifications. An example of such strategies is given for the case of Ordered
SOS specifications.

Verdejo in [141] and Verdejo and Marti-Oliet in [139,140,142] report the im-
plementation of a number of instances of SOS semantics in Maude [36]. Our
approach is very close in essence to their work in that SOS deduction rules
are interpreted as Maude conditional rewrite rules. In [102], some aspects of
SOS meta-theory are implemented in Maude. The implementation defines a
GSOS-based framework and provides a way to check the premises of congru-
ence and operational conservativity meta-theorems. Furthermore, it allows for
animating programs based on their GSOS specifications.

13.2 Logic Programming (Centaur)

Centaur [26] is a tool developed in the 1980’s within the group of the late Gilles
Kahn at INRIA Sophia-Antipolis. It is described as a “generic interactive
environment generator”, i.e., it provides an environment for generating and
integrating syntactic manipulation and semantic animation tools. Centaur has
been widely used by different language developers (at over one hundred sites).
The high-level architecture of Centaur is depicted in Figure 2.

The abstract syntax of languages can be specified in Metal [74] or ASF [33].
Then the Centaur tool generates a parser (an incremental parser in the case of
ASF specifications) which is an independent process and can interact further
with the tool-set. Pretty-printing instructions can be specified in the PPML
formalism [95] and the result of compiling the PPML specification can be
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Fig. 2. High-Level Architecture of Centaur

used to pretty print the syntax in the editor. Semantics of languages can be
specified in Typol which is a textual description of the natural semantics [73]
which can be used to generate interpreters and debuggers.

The syntactic manipulation part is implemented in Le-Lisp and the logical
machine is written in Prolog. The interface between the two modules is written
in the C programming language.

13.3 Functional Programming (LETOS, PAC)

LETOS [67] is a tool that generates LATEX documents as well as executable
animation code in Miranda [129] from a wide range of semantics, including
some forms of SOS. A first attempt to implement an SOS meta-theorem, con-
cerning operational conservativity of [65] is also reported in [67]. However, the
implementation does not fully check this theorem and only checks the source-
dependency requirement which is one of the hypotheses of the conservativity
theorem of [65].

In [35] an approach for implementing SOS rules is presented which combines
(unconditional) term-rewriting and λ-calculus. By putting some extra con-
ditions on the syntax of the SOS (which are satisfied by GSOS rules), they
prove that the implemented rewrite system is one-step sound and complete as
well as divergence sound and complete with respect to the transition system
induced by the SOS. Furthermore, they prove confluence and termination of
their rewrite systems (for the micro-steps on the way to making a complete
operational transition). In [34] an implementation of the approach in the Larch
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Prover [66] is reported.

Process Algebra Compiler (PAC) [37] is a tool that takes the signature and the
SOS rules of a language and generates a scanner/parser as well as verification
libraries targeted at the specified language. The generated libraries can then
be compiled in combination with the kernels of a verification tool in order
to generate a complete verifier for the language with the specified syntax
and semantics. The scanner/parser specification are generated in LEX/YACC
syntax and the verification libraries can be generated both in Lisp and in
Standard ML which can then be compiled with the kernels of the MAUTO
tool [28] and the Concurrency Workbench [38], respectively.

14 Other Meta-Results

14.1 Non-Interference

Confidentiality is an important aspect of security and non-interference [63] is
a well-studied means to guarantee end-to-end confidentiality. Non-interference
means that a user with a lower confidentiality level cannot infer anything about
the higher-level information by interacting with the system (using lower-level
methods that it has in hand). In [126,127] a rule format for non-interference is
proposed which is based on the Cool languages format (in order to guarantee
compositionality of non-interference) and imposes further restrictions to assure
that the lower-level behavior of the system does not change as a result of
performing higher-level transitions.

14.2 Reversibility

Reversible computations are known to have some interesting properties (such
as being potentially dissipation free) and they can model several real-world
phenomena such as biological systems [40], chemical reactions [21] and quan-
tum computation [118]. In [112], a general recipe is given for reversing the
semantics in the SOS style. The technique is based on a subset of the de Si-
mone format and generates a new SOS which has a reverse transition relation
 and new predicates to recognize reversible terms from terms in the original
syntax and to generate fresh tags (in order to distinguish different instances
of the same action in concurrency scenarios). We illustrate the approach with
a simple example below.
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Example 62 Consider the following standard deduction rules

a.x
a→x

x
a→x′

x || y a→x′ || y

y
a→ y′

x || y a→x || y′

x
a→x′ y

a→ y′

x || y τ→x′ || y′

defined on a signature with a constant 0, action prefixing a. and nondetermin-
istic choice + . The reversible model of the above semantics and in particular
the reverse transition relation  is defined as follows.

std(x)

a.x
a[n]→ a[n].x

std(x)

a[n].x
a[n]
 a.x

x
b[m]→ x′

a[n].x
b[m]→ a[n].x′

x
b[m]
 x′

a[n].x
b[m]
 a[n].x′

x
a[n]→ x′ freshn(y)

x || y a[n]→ x′ || y
x

a[n]
 x′ freshn(y)

x || y a[n]
 x′ || y

y
a[n]→ y′ freshn(x)

x || y a[n]→ x || y′

y
a[n]
 y′ freshn(x)

x || y a[n]
 x || y′

x
a[n]→ x′ y

a[n]→ y′

x || y τ [n]→ x′ || y′
x

a[n]
 x′ y

a[n]
 y′

x || y τ [n]
 x′ || y′

where the predicates std(p) and freshn(p) check whether term p is standard
(belongs to the original syntax, i.e., does not contain any tagged action) and
freshn(p) checks whether the tag n does not appear (is fresh) for p. Both pred-
icates can be defined structurally on terms but we omit their semantics here.

In [112], the following results are proved for the transformed reversible seman-
tics. In the remainder of this section, µ and ν stand for labels of the form a[n],

b[m] or τ [k] and
µ∗→ stands for a number (zero or more) transition with the

above-mentioned labels.

(1) Reversibility: p
µ→ q if and only if q

µ
 p;

(2) Well-foundedness: The reversible transition relation is well-founded (no
infinite chain of backward transitions exists) since backward computation
can only reverse the forward steps made so far (which are finite);

(3) Unique Transitions: For all forward and backward computations p
µ7→ q

and p
ν7→ q (where 7→ can be → or  ), it holds that µ = ν. This

property holds because labels are annotated with unique tags and after
the transition the tags are recorded in the syntax;

(4) Reverse diamond: if p
a[m]
 q and p

b[n]
 r and m 6= n, there exists an s such

that q
b[n]
 s and r

a[m]
 s;

(5) Forward diamond: if p
a[m]→ q

µ∗→ t and p
b[n]→ r

ν∗→ t and m 6= n, there exists an

s such that q
b[n]→ s and r

a[m]→ s and s
µ∗\b[n]→ t and s

ν∗\a[m]→ t (where µ∗ \ a[n]
denotes removing the instances of a[n] in µ∗);
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(6) Forward-reverse bisimilarity in the transformed reversible model is a con-
gruence and is included in the strong bisimilarity in the original model.
Forward-reverse bisimilarity is defined below.

Definition 63 (Forward-Reverse Bisimilarity) A symmetric relation R ⊆
CΣ × CΣ is a bisimulation relation w.r.t. a forward transition relation → , a
backward transition relation  , and a predicate ↓ when for all p, q ∈ CΣ such
that (p, q) ∈ R, it satisfies

• for all p′ ∈ CΣ and l ∈ L, if p
l→ p′, then q

l→ q′ for some q′ ∈ CΣ such that
(p′, q′) ∈ R;

• for all p′ ∈ CΣ and l ∈ L, if p
l p′, then q

l q′ for some q′ ∈ CΣ such that
(p′, q′) ∈ R;

• (l) ↓ p if and only if (l) ↓ q.

Two closed terms p and q are forward-reverse bisimilar if and only if there
exists a bisimulation relation R such that (p, q) ∈ R.

14.3 Bounded nondeterminism

In [137], a rule format is proposed, by imposing restrictions on the de Simone
format, which guarantees that the induced semantics affords only bounded
non-determinism, i.e., each closed term has only finite number of outgoing
transitions. Fokkink and Vu in [52] generalize the result of [137] to a far more
general SOS framework.

Bloom (reference [5] from the paper [52]) generalized GSOS to a higher-order
setting and formulated a notion of boundedness reminiscent to the one of [137]:
Bounded TSS in higher-order GSOS is bounded nondeterministic.

The following definitions are from [52]. Note that only TSS’s with positive
premises are considered and there is only one transition relation. The seman-
tics is three-valued stable models.

Definition 64 (Bounded Nondeterminism) An LTS is bounded nonde-
terministic if all its states are finitely branching. A state s in an LTS is finitely
branching if it has only finitely many outgoing transitions.

Definition 65 (Bounded Nondeterminism Format) A transition rule is
in bounded nondeterminism format if: (1) all variables occurring in the left-
hand side of its positive premises also occur in its source, and (2) all variables
occurring in its target also occur in its source or in the right-hand side of a
positive premise.
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A TSS is in bounded nondeterminism format if all its transition rules are.

Definition 66 (η-Type) Let R be a TSS. Let η map each term in TΣ(Σ) to
a finite subset of TΣ(Σ). Consider a transition rule ρ with source t and positive

premises {ti
li→ t′i | i ∈ I}. The mapping ϕ : η(t) → Pω(TΣ(Σ)) is defined as

follows:

ϕ(u) = {li | i ∈ I ∧ ti = u}.
〈t, ϕ〉 is said to be the η-type of the transition rule ρ.

Definition 67 (Uniform) A TSS is uniform if sources of transition rules
that are α-convertible are always syntactically equal.

Definition 68 (Bounded) A TSS is bounded if it is uniform and for each
η-type the corresponding set of transition rules is finite. A TSS is uniform if
sources of transition rules that are α-convertible are always syntactically equal.

Theorem 69 If a TSS is bounded, in bounded nondeterminism format and
strictly stratifiable, then the LTS associated to the TSS is bounded nondeter-
ministic.
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