
A process algebraic analysis of privacy-type properties in

cryptographic protocols

Stéphanie Delaune

LSV, CNRS & ENS Cachan, France

Saturday, September 6th, 2014

S. Delaune (LSV) Verification of cryptographic protocols 6th September 2014 1 / 23



Cryptographic protocols everywhere !

Cryptographic protocols

small programs designed to secure
communication (e.g. secrecy,
authentication, anonymity, . . . )

use cryptographic primitives (e.g.

encryption, signature, . . . . . . )

The network is unsecure!

Communications take place over a public network like the Internet.

S. Delaune (LSV) Verification of cryptographic protocols 6th September 2014 2 / 23



Cryptographic protocols everywhere !

Cryptographic protocols

small programs designed to secure
communication (e.g. secrecy,
authentication, anonymity, . . . )

use cryptographic primitives (e.g.

encryption, signature, . . . . . . )

It becomes more and more important to protect our privacy.

S. Delaune (LSV) Verification of cryptographic protocols 6th September 2014 2 / 23



Electronic passport

−→ studied in [Arapinis et al., 10]

An electronic passport is a passport with an RFID tag embedded in it.

The RFID tag stores:

the information printed on your passport,

a JPEG copy of your picture.

S. Delaune (LSV) Verification of cryptographic protocols 6th September 2014 3 / 23



Electronic passport

−→ studied in [Arapinis et al., 10]

An electronic passport is a passport with an RFID tag embedded in it.

The RFID tag stores:

the information printed on your passport,

a JPEG copy of your picture.

The Basic Access Control (BAC) protocol is a key establishment protocol
that has been designed to also ensure unlinkability.

ISO/IEC standard 15408

Unlinkability aims to ensure that a user may make multiple uses of a

service or resource without others being able to link these uses together.

S. Delaune (LSV) Verification of cryptographic protocols 6th September 2014 3 / 23



Basic Acccess Control (BAC) protocol

Passport
(KE , KM)

Reader
(KE , KM)

S. Delaune (LSV) Verification of cryptographic protocols 6th September 2014 4 / 23



Basic Acccess Control (BAC) protocol

Passport
(KE , KM)

Reader
(KE , KM)

get_challenge

S. Delaune (LSV) Verification of cryptographic protocols 6th September 2014 4 / 23



Basic Acccess Control (BAC) protocol

Passport
(KE , KM)

Reader
(KE , KM)

get_challenge

NP , KP

NP

S. Delaune (LSV) Verification of cryptographic protocols 6th September 2014 4 / 23



Basic Acccess Control (BAC) protocol

Passport
(KE , KM)

Reader
(KE , KM)

get_challenge

NP , KP

NP

NR , KR

{NR , NP , KR }KE
, MACKM

({NR , NP , KR }KE
)

S. Delaune (LSV) Verification of cryptographic protocols 6th September 2014 4 / 23



Basic Acccess Control (BAC) protocol

Passport
(KE , KM)

Reader
(KE , KM)

get_challenge

NP , KP

NP

NR , KR

{NR , NP , KR }KE
, MACKM

({NR , NP , KR }KE
)

{NP , NR , KP }KE
, MACKM

({NP , NR , KP }KE
)

S. Delaune (LSV) Verification of cryptographic protocols 6th September 2014 4 / 23



Basic Acccess Control (BAC) protocol

Passport
(KE , KM)

Reader
(KE , KM)

get_challenge

NP , KP

NP

NR , KR

{NR , NP , KR }KE
, MACKM

({NR , NP , KR }KE
)

{NP , NR , KP }KE
, MACKM

({NP , NR , KP }KE
)

Kseed = f(KP , KR ) Kseed = f(KP , KR )

S. Delaune (LSV) Verification of cryptographic protocols 6th September 2014 4 / 23



What does unlinkability mean?

Informally, an observer/attacker can not observe the difference between the
two following situations:

1 a situation where the same passport may be
used twice (or even more);

2 a situation where each passport is used at
most once.

S. Delaune (LSV) Verification of cryptographic protocols 6th September 2014 5 / 23



What does unlinkability mean?

Informally, an observer/attacker can not observe the difference between the
two following situations:

1 a situation where the same passport may be
used twice (or even more);

2 a situation where each passport is used at
most once.

More formally,

!new ke.new km.(!PBAC | !RBAC)
?
≈ !new ke.new km.( PBAC | !RBAC)

↑ ↑

many sessions

for each passport

only one session
for each passport

(we still have to formalize the processes and the notion of equivalence)

S. Delaune (LSV) Verification of cryptographic protocols 6th September 2014 5 / 23



French electronic passport

−→ the passport must reply to all received messages.

Passport
(KE ,KM)

Reader
(KE ,KM)

get_challenge

NP , KP

NP

NR , KR

{NR , NP , KR }KE
, MACKM

({NR , NP , KR }KE
)

S. Delaune (LSV) Verification of cryptographic protocols 6th September 2014 6 / 23



French electronic passport

−→ the passport must reply to all received messages.

Passport
(KE ,KM)

Reader
(KE ,KM)

get_challenge

NP , KP

NP

NR , KR

{NR , NP , KR }KE
, MACKM

({NR , NP , KR }KE
)

If MAC check fails

mac_error

S. Delaune (LSV) Verification of cryptographic protocols 6th September 2014 6 / 23



French electronic passport

−→ the passport must reply to all received messages.

Passport
(KE ,KM)

Reader
(KE ,KM)

get_challenge

NP , KP

NP

NR , KR

{NR , NP , KR }KE
, MACKM

({NR , NP , KR }KE
)

If MAC check
succeeds

If nonce check fails

nonce_error

S. Delaune (LSV) Verification of cryptographic protocols 6th September 2014 6 / 23



An attack on the French passport [Chothia & Smirnov, 10]

Attack against unlinkability

An attacker can track a French passport, provided he has once witnessed a
successful authentication.

S. Delaune (LSV) Verification of cryptographic protocols 6th September 2014 7 / 23



An attack on the French passport [Chothia & Smirnov, 10]

Attack against unlinkability

An attacker can track a French passport, provided he has once witnessed a
successful authentication.

Part 1 of the attack. The attacker eavesdropes on Alice using her passport
and records message M.

Alice’s Passport
(KE ,KM)

Reader
(KE ,KM)

get_challenge

NP , KP

NP

NR , KR

M = {NR , NP , KR }KE
, MACKM

({NR , NP , KR }KE
)

S. Delaune (LSV) Verification of cryptographic protocols 6th September 2014 7 / 23



An attack on the French passport [Chothia & Smirnov, 10]

Part 2 of the attack.
The attacker replays the message M and checks the error code he receives.

????’s Passport
(K ′

E
,K ′

M
)

Attacker

get_challenge

N′

P
, K ′

P

N′

P

M = {NR , NP , KR }KE
, MACKM

({NR , NP , KR }KE
)

S. Delaune (LSV) Verification of cryptographic protocols 6th September 2014 7 / 23



An attack on the French passport [Chothia & Smirnov, 10]

Part 2 of the attack.
The attacker replays the message M and checks the error code he receives.

????’s Passport
(K ′

E
,K ′

M
)

Attacker

get_challenge

N′

P
, K ′

P

N′

P

M = {NR , NP , KR }KE
, MACKM

({NR , NP , KR }KE
)

mac_error

=⇒ MAC check failed =⇒ K ′

M 6= KM =⇒ ???? is not Alice

S. Delaune (LSV) Verification of cryptographic protocols 6th September 2014 7 / 23



An attack on the French passport [Chothia & Smirnov, 10]

Part 2 of the attack.
The attacker replays the message M and checks the error code he receives.

????’s Passport
(K ′

E
,K ′

M
)

Attacker

get_challenge

N′

P
, K ′

P

N′

P

M = {NR , NP , KR }KE
, MACKM

({NR , NP , KR }KE
)

nonce_error

=⇒ MAC check succeeded =⇒ K ′

M = KM =⇒ ???? is Alice

S. Delaune (LSV) Verification of cryptographic protocols 6th September 2014 7 / 23



Outline

|

Does the protocol

Modelling

satisfy

|= ϕ

a security property?

Outline of the remaining of this talk

1 Modelling cryptographic protocols and their security properties

2 Designing verification algorithms

−→ we focus here on privacy-type security properties

S. Delaune (LSV) Verification of cryptographic protocols 6th September 2014 8 / 23



Part I

Modelling cryptographic protocols

and their security properties

S. Delaune (LSV) Verification of cryptographic protocols 6th September 2014 9 / 23



Protocols as processes

Applied pi calculus [Abadi & Fournet, 01]

basic programming language with constructs for concurrency and
communication

−→ based on the π-calculus [Milner et al., 92] ...

P, Q := 0 null process
in(c , x).P input
out(c , u).P output
if u = v then P else Q conditional
P | Q parallel composition
!P replication
new n.P fresh name generation

S. Delaune (LSV) Verification of cryptographic protocols 6th September 2014 10 / 23



Protocols as processes

Applied pi calculus [Abadi & Fournet, 01]

basic programming language with constructs for concurrency and
communication

−→ based on the π-calculus [Milner et al., 92] ...

P, Q := 0 null process
in(c , x).P input
out(c , u).P output
if u = v then P else Q conditional
P | Q parallel composition
!P replication
new n.P fresh name generation

... but messages that are exchanged are not necessarily atomic !

S. Delaune (LSV) Verification of cryptographic protocols 6th September 2014 10 / 23



Messages as terms

Messages are abstracted by (ground) terms

Ground terms are built over a set of names N , and a signature F .

t ::= n name n

| f (t1, . . . , tk) application of symbol f ∈ F

S. Delaune (LSV) Verification of cryptographic protocols 6th September 2014 11 / 23



Messages as terms

Messages are abstracted by (ground) terms

Ground terms are built over a set of names N , and a signature F .

t ::= n name n

| f (t1, . . . , tk) application of symbol f ∈ F

Example: representation of {a, n}k

Names: n, k, a

constructors: senc, pair,

senc

pair k

a n

S. Delaune (LSV) Verification of cryptographic protocols 6th September 2014 11 / 23



Messages as terms

Messages are abstracted by (ground) terms

Ground terms are built over a set of names N , and a signature F .

t ::= n name n

| f (t1, . . . , tk) application of symbol f ∈ F

−→ The term algebra is equipped with an equational theory E.

Example: representation of {a, n}k

Names: n, k, a

constructors: senc, pair,

destructors: sdec, proj1, proj2.

senc

pair k

a n

−→ sdec(senc(x , y), y) = x , proj1(pair(x , y)) = x , proj2(pair(x , y)) = y .

S. Delaune (LSV) Verification of cryptographic protocols 6th September 2014 11 / 23



Going back to the e-passport

Cryptographic primitives are modelled using function symbols

encryption/decryption: senc/2, sdec/2

concatenation/projections: 〈 , 〉/2, proj1/1, proj2/1

mac construction: mac/2

−→ sdec(senc(x , y), y) = x , proj1(〈x , y〉) = x , proj2(〈x , y〉) = y .

Nonces nr , np, and keys kr , kp, ke , km are modelled using names

S. Delaune (LSV) Verification of cryptographic protocols 6th September 2014 12 / 23



Going back to the e-passport

Cryptographic primitives are modelled using function symbols

encryption/decryption: senc/2, sdec/2

concatenation/projections: 〈 , 〉/2, proj1/1, proj2/1

mac construction: mac/2

−→ sdec(senc(x , y), y) = x , proj1(〈x , y〉) = x , proj2(〈x , y〉) = y .

Nonces nr , np, and keys kr , kp, ke , km are modelled using names

Modelling Passport’s role

PBAC(kE , kM) = new nP .new kP .in(〈zE , zM〉).
if zM = mac(zE , kM) then if nP = proj1(proj2(sdec(zE , kE )))

then out(〈m, mac(m, kM)〉)
else out(nonce_error )

else out(mac_error )

where m = senc(〈nP , 〈proj1(zE ), kP〉〉, kE ).

S. Delaune (LSV) Verification of cryptographic protocols 6th September 2014 12 / 23



Semantics

Semantics →:

Comm out(c , u).P | in(c , x).Q → P | Q{u/x}

Then if u = v then P else Q → P when u =E v

Else if u = v then P else Q → Q when u 6=E v

S. Delaune (LSV) Verification of cryptographic protocols 6th September 2014 13 / 23



Semantics

Semantics →:

Comm out(c , u).P | in(c , x).Q → P | Q{u/x}

Then if u = v then P else Q → P when u =E v

Else if u = v then P else Q → Q when u 6=E v

closed by

structural equivalence (≡):

P | Q ≡ Q | P, P | 0 ≡ P, . . .

application of evaluation contexts:

P → P ′

newn. P → newn. P ′

P → P ′

P | Q → P ′ | Q

S. Delaune (LSV) Verification of cryptographic protocols 6th September 2014 13 / 23



Security properties - privacy

Privacy-type properties are modelled as equivalence-based properties

testing equivalence between P and Q, P ≈t Q

for all processes A, we have that:

(A | P) ⇓c if, and only if, (A | Q) ⇓c

where P ⇓c means that P can evolve and emits on public channel c .

S. Delaune (LSV) Verification of cryptographic protocols 6th September 2014 14 / 23



Security properties - privacy

Privacy-type properties are modelled as equivalence-based properties

testing equivalence between P and Q, P ≈t Q

for all processes A, we have that:

(A | P) ⇓c if, and only if, (A | Q) ⇓c

where P ⇓c means that P can evolve and emits on public channel c .

Example 1: out(a, s)
?

≈t out(a, s ′)

S. Delaune (LSV) Verification of cryptographic protocols 6th September 2014 14 / 23



Security properties - privacy

Privacy-type properties are modelled as equivalence-based properties

testing equivalence between P and Q, P ≈t Q

for all processes A, we have that:

(A | P) ⇓c if, and only if, (A | Q) ⇓c

where P ⇓c means that P can evolve and emits on public channel c .

Example 1: out(a, s) 6≈t out(a, s ′)

−→ A = in(a, x).if x = s then out(c , ok)

S. Delaune (LSV) Verification of cryptographic protocols 6th September 2014 14 / 23



Security properties - privacy

Privacy-type properties are modelled as equivalence-based properties

testing equivalence between P and Q, P ≈t Q

for all processes A, we have that:

(A | P) ⇓c if, and only if, (A | Q) ⇓c

where P ⇓c means that P can evolve and emits on public channel c .

Example 2:

new s.out(a, senc(s, k)).out(a, senc(s, k ′))
?

≈t

new s, s ′.out(a, senc(s, k)).out(a, senc(s ′, k ′))

S. Delaune (LSV) Verification of cryptographic protocols 6th September 2014 14 / 23



Security properties - privacy

Privacy-type properties are modelled as equivalence-based properties

testing equivalence between P and Q, P ≈t Q

for all processes A, we have that:

(A | P) ⇓c if, and only if, (A | Q) ⇓c

where P ⇓c means that P can evolve and emits on public channel c .

Example 2:

new s.out(a, senc(s, k)).out(a, senc(s, k ′))
6≈t

new s, s ′.out(a, senc(s, k)).out(a, senc(s ′, k ′))

−→ A = in(a, x).in(a, y).if (sdec(x , k) = sdec(y , k ′)) then out(c , ok)

S. Delaune (LSV) Verification of cryptographic protocols 6th September 2014 14 / 23



Security properties - privacy

Privacy-type properties are modelled as equivalence-based properties

testing equivalence between P and Q, P ≈t Q

for all processes A, we have that:

(A | P) ⇓c if, and only if, (A | Q) ⇓c

where P ⇓c means that P can evolve and emits on public channel c .

Question: Are the two following processes in testing equivalence?

new s.out(a, s)
?

≈t new s.new k.out(a, senc(s, k))

S. Delaune (LSV) Verification of cryptographic protocols 6th September 2014 14 / 23



Some privacy-type properties

Unlinkability [Arapinis et al, 2010]

!new ke.new km.(!PBAC | !RBAC)
?

≈t !new ke.new km.( PBAC | !RBAC)
↑ ↑

many sessions

for each passport

only one session
for each passport

S. Delaune (LSV) Verification of cryptographic protocols 6th September 2014 15 / 23



Some privacy-type properties

Unlinkability [Arapinis et al, 2010]

!new ke.new km.(!PBAC | !RBAC)
?

≈t !new ke.new km.( PBAC | !RBAC)
↑ ↑

many sessions

for each passport

only one session
for each passport

Vote privacy [Kremer and Ryan, 2005]

VA(yes) ≈t VA(no)

S. Delaune (LSV) Verification of cryptographic protocols 6th September 2014 15 / 23



Some privacy-type properties

Unlinkability [Arapinis et al, 2010]

!new ke.new km.(!PBAC | !RBAC)
?

≈t !new ke.new km.( PBAC | !RBAC)
↑ ↑

many sessions

for each passport

only one session
for each passport

Vote privacy [Kremer and Ryan, 2005]

VA(yes) | VB(no) ≈t VA(no) | VB(yes)
↑ ↑

A votes yes

B votes no

A votes no
B votes yes

S. Delaune (LSV) Verification of cryptographic protocols 6th September 2014 15 / 23



Some privacy-type properties

Unlinkability [Arapinis et al, 2010]

!new ke.new km.(!PBAC | !RBAC)
?

≈t !new ke.new km.( PBAC | !RBAC)
↑ ↑

many sessions

for each passport

only one session
for each passport

Vote privacy [Kremer and Ryan, 2005]

S[ VA(yes) | VB(no) ] ≈t S[ VA(no) | VB(yes) ]
↑ ↑

A votes yes

B votes no

A votes no
B votes yes

−→ often requires some assumptions S[_ ]

S. Delaune (LSV) Verification of cryptographic protocols 6th September 2014 15 / 23



Part II

Designing verification algorithms

for privacy-type properties

S. Delaune (LSV) Verification of cryptographic protocols 6th September 2014 16 / 23



Difficulties when checking testing equivalence P ≈t Q

testing equivalence is undecidable in general

S. Delaune (LSV) Verification of cryptographic protocols 6th September 2014 17 / 23



Difficulties when checking testing equivalence P ≈t Q

testing equivalence is undecidable in general

Processes without replication

We still have to consider any possible behavior for the attacker (for all
quantification over processes).

−→ no hope to test each possible behavior of the attacker in turn

Once the behavior of the attacker is fixed, we still have to decide
whether the two sequences of messages that are outputted are
indistinguishable or not.

−→ the so-called static equivalence problem.

S. Delaune (LSV) Verification of cryptographic protocols 6th September 2014 17 / 23



Static equivalence

Static equivalence σ ∼ σ
′ (modulo E)

Two sequences of messages σ = {w1 → u1, . . . , wn → un} and
σ′ = {w1 → u′

1, . . . , wn → u′

n} are in static equivalence when:

R1σ =E R2σ ⇔ R1σ′ =E R2σ′ for any recipes R1, R2

S. Delaune (LSV) Verification of cryptographic protocols 6th September 2014 18 / 23



Static equivalence

Static equivalence σ ∼ σ
′ (modulo E)

Two sequences of messages σ = {w1 → u1, . . . , wn → un} and
σ′ = {w1 → u′

1, . . . , wn → u′

n} are in static equivalence when:

R1σ =E R2σ ⇔ R1σ′ =E R2σ′ for any recipes R1, R2

Example: a simple voting protocol with 3 voters a, b, and c .

V → S : 〈V , {vote}k〉

S. Delaune (LSV) Verification of cryptographic protocols 6th September 2014 18 / 23



Static equivalence

Static equivalence σ ∼ σ
′ (modulo E)

Two sequences of messages σ = {w1 → u1, . . . , wn → un} and
σ′ = {w1 → u′

1, . . . , wn → u′

n} are in static equivalence when:

R1σ =E R2σ ⇔ R1σ′ =E R2σ′ for any recipes R1, R2

Example: a simple voting protocol with 3 voters a, b, and c .

V → S : 〈V , {vote}k〉

σ = {w1 → 〈a, {yes}k〉; w2 → 〈b, {no}k〉; w3 → 〈c , {yes}k〉}, and

σ′ = {w1 → 〈a, {no}k〉; w2 → 〈b, {yes}k〉; w3 → 〈c , {yes}k〉}.

where a, b, c , yes, and no are public constants.

S. Delaune (LSV) Verification of cryptographic protocols 6th September 2014 18 / 23



Static equivalence

Static equivalence σ ∼ σ
′ (modulo E)

Two sequences of messages σ = {w1 → u1, . . . , wn → un} and
σ′ = {w1 → u′

1, . . . , wn → u′

n} are in static equivalence when:

R1σ =E R2σ ⇔ R1σ′ =E R2σ′ for any recipes R1, R2

Example: a simple voting protocol with 3 voters a, b, and c .

V → S : 〈V , {vote}k〉

σ = {w1 → 〈a, {yes}k〉; w2 → 〈b, {no}k〉; w3 → 〈c , {yes}k〉}, and

σ′ = {w1 → 〈a, {no}k〉; w2 → 〈b, {yes}k〉; w3 → 〈c , {yes}k〉}.

where a, b, c , yes, and no are public constants.

−→ σ and σ′ are not in static equivalence
R1 = proj2(w1) and R2 = proj2(w3)

S. Delaune (LSV) Verification of cryptographic protocols 6th September 2014 18 / 23



Static equivalence

Static equivalence σ ∼ σ
′ (modulo E)

Two sequences of messages σ = {w1 → u1, . . . , wn → un} and
σ′ = {w1 → u′

1, . . . , wn → u′

n} are in static equivalence when:

R1σ =E R2σ ⇔ R1σ′ =E R2σ′ for any recipes R1, R2

The static equvialence problem is decidable (even in PTIME) for many
interesting equational theories useful to model cryptography primitives.

[Abadi & Cortier, TCS 2006], [Cortier & Delaune, JAR 2012]

−→ Some automatic tools are available, e.g.

YAPA: http://www.lsv.ens-cachan.fr/~baudet/yapa/

KISS: http://www.lsv.ens-cachan.fr/~ciobaca/kiss/

FAST: http://www.infsec.ethz.ch/people/brunoco

S. Delaune (LSV) Verification of cryptographic protocols 6th September 2014 18 / 23

http://www.lsv.ens-cachan.fr/~baudet/yapa/
http://www.lsv.ens-cachan.fr/~ciobaca/kiss/
http://www.infsec.ethz.ch/people/brunoco


Testing equivalence (for processes with replication)

Some decidability results [Chrétien, Cortier & D., ICALP’13 & CONCUR’14]

- restricted set of cryptographic primitives

- some syntaxic restrictions on the shape of the processes

A more pragmatic approach [Blanchet et al., 2005]

ProVerif http://www.proverif.ens.fr

+ various cryptographic primitives

- termination is not guaranteed; diff-equivalence (too strong)

−→ These results are not suitable to analyse vote-privacy, or unlinkability
of the BAC protocol.

S. Delaune (LSV) Verification of cryptographic protocols 6th September 2014 19 / 23

http://www.proverif.ens.fr


Testing equivalence (for processes without replication)

Cheval, Comon-Lundh & D. CCS 2011

A procedure for deciding testing equivalence for a large class of processes
implemented in a tool called APTE

Our class of processes:

+ non-trivial else branches, private channels, and non-deterministic
choice;

– but no replication, and a fixed set of cryptographic primitives
(signature, symmetric and asymmetric encryptions, hash function,
mac, pairs).

S. Delaune (LSV) Verification of cryptographic protocols 6th September 2014 20 / 23



Testing equivalence (for processes without replication)

Cheval, Comon-Lundh & D. CCS 2011

A procedure for deciding testing equivalence for a large class of processes
implemented in a tool called APTE

Our class of processes:

+ non-trivial else branches, private channels, and non-deterministic
choice;

– but no replication, and a fixed set of cryptographic primitives
(signature, symmetric and asymmetric encryptions, hash function,
mac, pairs).

Similar results for restricted class of processes have been obtained in
[Baudet, 05], [Dawson & Tiu, 10], [Chevalier & Rusinowitch, 10], [Chadha
et al., 12], . . .

S. Delaune (LSV) Verification of cryptographic protocols 6th September 2014 20 / 23



Our procedure in a nutshell

Two main steps:

1 A symbolic exploration of all the possible traces

The infinite number of possible traces (i.e. experiment) are
represented by a finite set of symbolic traces.

−→ this set is still huge (exponential) !

2 A decision procedure for deciding (symbolic) equivalence between sets
of symbolic traces.

−→ this algorithm works quite well

S. Delaune (LSV) Verification of cryptographic protocols 6th September 2014 21 / 23



Our procedure in a nutshell

Two main steps:

1 A symbolic exploration of all the possible traces

The infinite number of possible traces (i.e. experiment) are
represented by a finite set of symbolic traces.

−→ this set is still huge (exponential) !

2 A decision procedure for deciding (symbolic) equivalence between sets
of symbolic traces.

−→ this algorithm works quite well

Some applications

unlinkability in RFID protocols (e.g. e-passport protocol)

anonymity (e.g. private authentication protocol)

S. Delaune (LSV) Verification of cryptographic protocols 6th September 2014 21 / 23



Our procedure in a nutshell

Two main steps:

1 A symbolic exploration of all the possible traces

The infinite number of possible traces (i.e. experiment) are
represented by a finite set of symbolic traces.

−→ this set is still huge (exponential) !

2 A decision procedure for deciding (symbolic) equivalence between sets
of symbolic traces.

−→ this algorithm works quite well

Main limitations

e-voting protocols are still out of reach

we can only handle very few sessions (state space explosion problem)

S. Delaune (LSV) Verification of cryptographic protocols 6th September 2014 21 / 23



APTE- Algorithm for Proving Trace Equivalence

http://projects.lsv.ens-cachan.fr/APTE

−→ developed by Vincent Cheval

−→ written in Ocaml, around 12 KLocs

S. Delaune (LSV) Verification of cryptographic protocols 6th September 2014 22 / 23

http://projects.lsv.ens-cachan.fr/APTE


Conclusion - What remains to do?

It remains a lot to do for analysing privacy-type properties

formal definitions of some sublte security properties (receipt-freeness,
coercion-resistance, . . . )

algorithms (and tools!) for checking (automatically or not) testing
equivalence for various cryptographic primitives;

more composition results.

Main topics of the ANR JCJC - VIP project
(Jan. 2012 - Dec 2015)
http://www.lsv.ens-cachan.fr/Projects/anr-vip/

−→ a postdoc position is available on this project.

S. Delaune (LSV) Verification of cryptographic protocols 6th September 2014 23 / 23

http://www.lsv.ens-cachan.fr/Projects/anr-vip/

